Deriving Thresholds of Object-Oriented Metrics to Predict Defect-Proneness of Classes: A Large-Scale Meta-analysis
2023-04-01
发表期刊INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING (IF:0.6[JCR-2023],0.8[5-Year])
ISSN0218-1940
EISSN1793-6403
卷号33期号:5页码:651-695
发表状态已发表
DOI10.1142/S0218194023500110
摘要Many studies have explored the methods of deriving thresholds of object-oriented (i.e. OO) metrics. Unsupervised methods are mainly based on the distributions of metric values, while supervised methods principally rest on the relationships between metric values and defect-proneness of classes. The objective of this study is to empirically examine whether there are effective threshold values of OO metrics by analyzing existing threshold derivation methods with a large-scale meta-analysis. Based on five representative threshold derivation methods (i.e. VARL, ROC, BPP, MFM, and MGM) and 3268 releases from 65 Java projects, we first employ statistical meta-analysis and sensitivity analysis techniques to derive thresholds for 62 OO metrics on the training data. Then, we investigate the predictive performance of five candidate thresholds for each metric on the validation data to explore which of these candidate thresholds can be served as the threshold. Finally, we evaluate their predictive performance on the test data. The experimental results show that 26 of 62 metrics have the threshold effect and the derived thresholds by meta-analysis achieve promising results of GM values and significantly outperform almost all five representative (baseline) thresholds.
关键词Object-oriented metric defect-proneness threshold meta-analysis
URL查看原文
收录类别SCI ; EI
语种英语
资助项目National Natural Science Foundation of China["62172205","62072194","62202306"]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Engineering, Electrical & Electronic
WOS记录号WOS:000975887200001
出版者WORLD SCIENTIFIC PUBL CO PTE LTD
EI入藏号20231814039463
EI主题词Sensitivity analysis
EI分类号921 Mathematics ; 951 Materials Science
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/301105
专题信息科学与技术学院
信息科学与技术学院_PI研究组_唐宇田组
通讯作者Yang, Yibiao; Zhou, Yuming
作者单位
1.State Key Lab Novel Software Technol Nanjing Univ, P, R China, Nanjing, Peoples R China
2.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
推荐引用方式
GB/T 7714
Mei, Yuanqing,Rong, Yi,Liu, Shiran,et al. Deriving Thresholds of Object-Oriented Metrics to Predict Defect-Proneness of Classes: A Large-Scale Meta-analysis[J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING,2023,33(5):651-695.
APA Mei, Yuanqing.,Rong, Yi.,Liu, Shiran.,Guo, Zhaoqiang.,Yang, Yibiao.,...&Zhou, Yuming.(2023).Deriving Thresholds of Object-Oriented Metrics to Predict Defect-Proneness of Classes: A Large-Scale Meta-analysis.INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING,33(5),651-695.
MLA Mei, Yuanqing,et al."Deriving Thresholds of Object-Oriented Metrics to Predict Defect-Proneness of Classes: A Large-Scale Meta-analysis".INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING 33.5(2023):651-695.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Mei, Yuanqing]的文章
[Rong, Yi]的文章
[Liu, Shiran]的文章
百度学术
百度学术中相似的文章
[Mei, Yuanqing]的文章
[Rong, Yi]的文章
[Liu, Shiran]的文章
必应学术
必应学术中相似的文章
[Mei, Yuanqing]的文章
[Rong, Yi]的文章
[Liu, Shiran]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。