ShanghaiTech University Knowledge Management System
Multiparameter Optimization of Two Common Proteomics Quantification Methods for Quantifying Low-Abundance Proteins | |
2019-01 | |
发表期刊 | JOURNAL OF PROTEOME RESEARCH (IF:3.8[JCR-2023],4.1[5-Year]) |
ISSN | 1535-3893 |
卷号 | 18期号:1页码:461-468 |
发表状态 | 已发表 |
DOI | 10.1021/acs.jproteome.8b00769 |
摘要 | Quantitative proteomics has been extensively applied in the screening of differentially regulated proteins in various research areas for decades, but its sensitivity and accuracy have been a bottleneck for many applications. Every step in the proteomics workflow can potentially affect the quantification of low-abundance proteins, but a systematic evaluation of their effects has not been done yet. In this work, to improve the sensitivity and accuracy of label-free quantification and tandem mass tags (TMT) labeling in quantifying low-abundance proteins, multiparameter optimization was carried out using a complex 2-proteome artificial sample mixture for a series of steps from sample preparation to data analysis, including the desalting of peptides, peptide injection amount for LC-MS/MS, MS1 resolution, the length of LC-MS/MS gradient, AGC targets, ion accumulation time, MS2 resolution, precursor coisolation threshold, data analysis software, statistical calculation methods, and protein fold changes, and the best settings for each parameter were defined. The suitable cutoffs for detecting low-abundance proteins with at least 1.5-fold and 2-fold changes were identified for label-free and TMT methods, respectively. The use of optimized parameters will significantly improve the overall performance of quantitative proteomics in quantifying low-abundance proteins and thus promote its application in other research areas. |
关键词 | quantitative proteomics label-free quantification tandem mass tags low-abundance proteins mass spectrometry |
收录类别 | SCI ; SCIE |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[31500670] |
WOS研究方向 | Biochemistry & Molecular Biology |
WOS类目 | Biochemical Research Methods |
WOS记录号 | WOS:000455285900042 |
出版者 | AMER CHEMICAL SOC |
WOS关键词 | LABEL-FREE QUANTIFICATION ; STRATEGY ; IDENTIFICATION ; CHROMATOGRAPHY ; SEPARATIONS ; EXPRESSION ; MIXTURES ; TAGS ; CELL |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/30101 |
专题 | 生命科学与技术学院_公共科研平台_组学分析平台 |
通讯作者 | Ren, Yan; Hao, Piliang |
作者单位 | 1.ShanghaiTech Univ, Sch Life Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China 2.BGI Shenzhen, Beishan Ind Zone 11th Bldg, Shenzhen 518083, Guangdong, Peoples R China 3.BGI Shenzhen, China Natl GeneBank, Jinsha Rd, Shenzhen 518120, Peoples R China |
第一作者单位 | 生命科学与技术学院 |
通讯作者单位 | 生命科学与技术学院 |
第一作者的第一单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhang, Chengqian,Shi, Zhaomei,Han, Ying,et al. Multiparameter Optimization of Two Common Proteomics Quantification Methods for Quantifying Low-Abundance Proteins[J]. JOURNAL OF PROTEOME RESEARCH,2019,18(1):461-468. |
APA | Zhang, Chengqian,Shi, Zhaomei,Han, Ying,Ren, Yan,&Hao, Piliang.(2019).Multiparameter Optimization of Two Common Proteomics Quantification Methods for Quantifying Low-Abundance Proteins.JOURNAL OF PROTEOME RESEARCH,18(1),461-468. |
MLA | Zhang, Chengqian,et al."Multiparameter Optimization of Two Common Proteomics Quantification Methods for Quantifying Low-Abundance Proteins".JOURNAL OF PROTEOME RESEARCH 18.1(2019):461-468. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。