ShanghaiTech University Knowledge Management System
Deep Surface Light Fields | |
2018-05 | |
会议录名称 | PROCEEDINGS OF ACM SIGGRAPH SYMPOSIUM |
发表状态 | 已发表 |
摘要 | A surface light field represents the radiance of rays originating from any points on the surface in any directions. Traditional approaches require ultra-dense sampling to ensure the rendering quality. In this paper, we present a novel neural network based technique called deep surface light field or DSLF to use only moderate sampling for high fidelity rendering. DSLF automatically fills in the missing data by leveraging different sampling patterns across the vertices and at the same time eliminates redundancies due to the network’s prediction capability. For real data, we address the image registration problem as well as conduct texture-aware remeshing for aligning texture edges with vertices to avoid blurring. Comprehensive experiments show that DSLF can further achieve high data compression ratio while facilitating real-time rendering on the GPU. |
关键词 | Image-based Rendering Deep Neural Network Real-time Rendering |
会议名称 | ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games |
收录类别 | EI |
语种 | 英语 |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29854 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_PI研究组_高盛华组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
作者单位 | 1.ShanghaiTech University 2.Duke University |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | ANPEI CHEN,MINYE WU,YINGLIANG ZHANG,et al. Deep Surface Light Fields[C],2018. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。