ShanghaiTech University Knowledge Management System
Mining fMRI Dynamics with Parcellation Prior for Brain Disease Diagnosis | |
2023 | |
会议录名称 | IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)
![]() |
ISSN | 1945-7928 |
卷号 | 2023-April |
发表状态 | 已发表 |
DOI | 10.1109/ISBI53787.2023.10230391 |
摘要 | To characterize atypical brain dynamics under diseases, prevalent studies investigate functional magnetic resonance imaging (fMRI). However, most of the existing analyses compress rich spatial-temporal information as the brain functional networks (BFNs) and directly investigate the whole-brain network without neurological priors about functional subnetworks. We thus propose a novel graph learning framework to mine fMRI signals with topological priors from brain parcellation for disease diagnosis. Specifically, we 1) detect diagnosis-related temporal features using a 'Transformer'for a higher-level BFN construction, and process it with a following graph convolutional network, and 2) apply an attention-based multiple instance learning strategy to emphasize the disease-affected subnetworks to further enhance the diagnosis performance and interpretability. Experiments demonstrate higher effectiveness of our method than compared methods in the diagnosis of early mild cognitive impairment. More importantly, our method is capable of localizing crucial brain subnetworks during the diagnosis, providing insights into the pathogenic source of mild cognitive impairment. © 2023 IEEE. |
会议录编者/会议主办者 | Flywheel ; Kitware ; Siemens Healthineers ; UCLouvain |
关键词 | Graph neural network Brain disease mild cognitive impairment Transformer Multiple instance learning |
会议名称 | 20th IEEE International Symposium on Biomedical Imaging, ISBI 2023 |
会议地点 | Cartagena, Colombia |
会议日期 | 18-21 April 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20233914806289 |
EI主题词 | Graph neural networks |
EISSN | 1945-8452 |
EI分类号 | 461.1 Biomedical Engineering ; 461.6 Medicine and Pharmacology ; 701.2 Magnetism: Basic Concepts and Phenomena ; 723.4 Artificial Intelligence ; 746 Imaging Techniques ; 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/297966 |
专题 | 生物医学工程学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_张玉瑶组 生物医学工程学院_PI研究组_沈定刚组 生物医学工程学院_PI研究组_张寒组 |
作者单位 | 1.School of Computer Science and Technology, Shanghaitech University, China 2.School of Biomedical Engineering, Shanghaitech University, China 3.Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Xiaozhao Liu,Mianxin Liu,Lang Mei,et al. Mining fMRI Dynamics with Parcellation Prior for Brain Disease Diagnosis[C]//Flywheel, Kitware, Siemens Healthineers, UCLouvain:IEEE Computer Society,2023. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。