Generative Deformable Radiance Fields for Disentangled Image Synthesis of Topology-Varying Objects
2022-10
发表期刊COMPUTER GRAPHICS FORUM (IF:2.7[JCR-2023],2.9[5-Year])
ISSN0167-7055
EISSN1467-8659
卷号41期号:7页码:431-442
发表状态已发表
DOI10.1111/cgf.14689
摘要3D-aware generative models have demonstrated their superb performance to generate 3D neural radiance fields (NeRF) from a collection of monocular 2D images even for topology-varying object categories. However, these methods still lack the capability to separately control the shape and appearance of the objects in the generated radiance fields. In this paper, we propose a generative model for synthesizing radiance fields of topology-varying objects with disentangled shape and appearance variations. Our method generates deformable radiance fields, which builds the dense correspondence between the density fields of the objects and encodes their appearances in a shared template field. Our disentanglement is achieved in an unsupervised manner without introducing extra labels to previous 3D-aware GAN training. We also develop an effective image inversion scheme for reconstructing the radiance field of an object in a real monocular image and manipulating its shape and appearance. Experiments show that our method can successfully learn the generative model from unstructured monocular images and well disentangle the shape and appearance for objects (e.g., chairs) with large topological variance. The model trained on synthetic data can faithfully reconstruct the real object in a given single image and achieve high-quality texture and shape editing results. © 2022 The Author(s) Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
关键词Image reconstruction Rendering (computer graphics) Textures 2D images CCS concept Computing methodologies Generative model Image manipulation Images synthesis Monocular image Performance Shape Modelling • computing methodology → rendering
URL查看原文
收录类别EI ; SCI ; CPCI-S
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Software Engineering
WOS记录号WOS:001008797000039
出版者John Wiley and Sons Inc
EI入藏号20231313801810
EI主题词Topology
EI分类号723.2 Data Processing and Image Processing - 723.5 Computer Applications - 921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/294836
专题信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_博士生
通讯作者Wang, Ziyu
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Tsinghua Univ, Beijing, Peoples R China
3.Microsoft Res Asia, Beijing, Peoples R China
4.MSRA, Beijing, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Wang, Ziyu,Deng, Yu,Yang, Jiaolong,et al. Generative Deformable Radiance Fields for Disentangled Image Synthesis of Topology-Varying Objects[J]. COMPUTER GRAPHICS FORUM,2022,41(7):431-442.
APA Wang, Ziyu,Deng, Yu,Yang, Jiaolong,Yu, Jingyi,&Tong, Xin.(2022).Generative Deformable Radiance Fields for Disentangled Image Synthesis of Topology-Varying Objects.COMPUTER GRAPHICS FORUM,41(7),431-442.
MLA Wang, Ziyu,et al."Generative Deformable Radiance Fields for Disentangled Image Synthesis of Topology-Varying Objects".COMPUTER GRAPHICS FORUM 41.7(2022):431-442.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Ziyu]的文章
[Deng, Yu]的文章
[Yang, Jiaolong]的文章
百度学术
百度学术中相似的文章
[Wang, Ziyu]的文章
[Deng, Yu]的文章
[Yang, Jiaolong]的文章
必应学术
必应学术中相似的文章
[Wang, Ziyu]的文章
[Deng, Yu]的文章
[Yang, Jiaolong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1111@cgf.14689.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。