ShanghaiTech University Knowledge Management System
Denoising-Based Turbo Compressed Sensing | |
2017 | |
发表期刊 | IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year]) |
ISSN | 2169-3536 |
卷号 | 5 |
发表状态 | 已发表 |
DOI | 10.1109/ACCESS.2017.2697978 |
摘要 | Turbo compressed sensing (Turbo-CS) is an efficient iterative algorithm for sparse signal recovery with partial orthogonal sensing matrices. In this paper, we extend the Turbo-CS algorithm to solve compressed sensing problems involving a more general signal structure, including compressive image recovery and low-rank matrix recovery. A main difficulty for such an extension is that the original Turbo-CS algorithm requires a prior knowledge of the signal distribution that is usually unavailable in practice. To overcome this difficulty, we propose to redesign the Turbo-CS algorithm by employing a generic denoiser that does not depend on the prior distribution, and hence the name denoising-based Turbo-CS (D-Turbo-CS). We then derive the extrinsic information for a generic denoiser by following the Turbo-CS principle. Based on that, we optimize the parametric extrinsic denoisers to minimize the output mean-square error (MSE). Explicit expressions are derived for the extrinsic SURE-LET denoiser used in image denoising and also for the singular value thresholding denoiser used in low-rank matrix denoising. We find that the dynamics of D-Turbo-CS can be well described by a scaler recursion called MSE evolution, similar to the case for Turbo-CS. Numerical results demonstrate that D-Turbo-CS considerably outperforms the counterpart algorithms in both reconstruction quality and running time. |
URL | 查看原文 |
收录类别 | SCI ; EI |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2938 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_袁晓军组 信息科学与技术学院_博士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of Statistics, Columbia University, New York, NY, USA 3.National Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhipeng Xue,Junjie Ma,Xiaojun Yuan. Denoising-Based Turbo Compressed Sensing[J]. IEEE ACCESS,2017,5. |
APA | Zhipeng Xue,Junjie Ma,&Xiaojun Yuan.(2017).Denoising-Based Turbo Compressed Sensing.IEEE ACCESS,5. |
MLA | Zhipeng Xue,et al."Denoising-Based Turbo Compressed Sensing".IEEE ACCESS 5(2017). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。