Denoising-Based Turbo Compressed Sensing
2017
发表期刊IEEE ACCESS (IF:3.4[JCR-2023],3.7[5-Year])
ISSN2169-3536
卷号5
发表状态已发表
DOI10.1109/ACCESS.2017.2697978
摘要Turbo compressed sensing (Turbo-CS) is an efficient iterative algorithm for sparse signal recovery with partial orthogonal sensing matrices. In this paper, we extend the Turbo-CS algorithm to solve compressed sensing problems involving a more general signal structure, including compressive image recovery and low-rank matrix recovery. A main difficulty for such an extension is that the original Turbo-CS algorithm requires a prior knowledge of the signal distribution that is usually unavailable in practice. To overcome this difficulty, we propose to redesign the Turbo-CS algorithm by employing a generic denoiser that does not depend on the prior distribution, and hence the name denoising-based Turbo-CS (D-Turbo-CS). We then derive the extrinsic information for a generic denoiser by following the Turbo-CS principle. Based on that, we optimize the parametric extrinsic denoisers to minimize the output mean-square error (MSE). Explicit expressions are derived for the extrinsic SURE-LET denoiser used in image denoising and also for the singular value thresholding denoiser used in low-rank matrix denoising. We find that the dynamics of D-Turbo-CS can be well described by a scaler recursion called MSE evolution, similar to the case for Turbo-CS. Numerical results demonstrate that D-Turbo-CS considerably outperforms the counterpart algorithms in both reconstruction quality and running time.
URL查看原文
收录类别SCI ; EI
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2938
专题信息科学与技术学院
信息科学与技术学院_PI研究组_袁晓军组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Department of Statistics, Columbia University, New York, NY, USA
3.National Laboratory of Science and Technology on Communications, University of Electronic Science and Technology of China, Chengdu, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhipeng Xue,Junjie Ma,Xiaojun Yuan. Denoising-Based Turbo Compressed Sensing[J]. IEEE ACCESS,2017,5.
APA Zhipeng Xue,Junjie Ma,&Xiaojun Yuan.(2017).Denoising-Based Turbo Compressed Sensing.IEEE ACCESS,5.
MLA Zhipeng Xue,et al."Denoising-Based Turbo Compressed Sensing".IEEE ACCESS 5(2017).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhipeng Xue]的文章
[Junjie Ma]的文章
[Xiaojun Yuan]的文章
百度学术
百度学术中相似的文章
[Zhipeng Xue]的文章
[Junjie Ma]的文章
[Xiaojun Yuan]的文章
必应学术
必应学术中相似的文章
[Zhipeng Xue]的文章
[Junjie Ma]的文章
[Xiaojun Yuan]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2938.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。