消息
×
loading..
Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report
2023
会议录名称LECTURE NOTES IN COMPUTER SCIENCE (INCLUDING SUBSERIES LECTURE NOTES IN ARTIFICIAL INTELLIGENCE AND LECTURE NOTES IN BIOINFORMATICS)
ISSN0302-9743
卷号13803 LNCS
页码44-70
发表状态已发表
DOI10.1007/978-3-031-25066-8_3
摘要

The role of mobile cameras increased dramatically over the past few years, leading to more and more research in automatic image quality enhancement and RAW photo processing. In this Mobile AI challenge, the target was to develop an efficient end-to-end AI-based image signal processing (ISP) pipeline replacing the standard mobile ISPs that can run on modern smartphone GPUs using TensorFlow Lite. The participants were provided with a large-scale Fujifilm UltraISP dataset consisting of thousands of paired photos captured with a normal mobile camera sensor and a professional 102MP medium-format FujiFilm GFX100 camera. The runtime of the resulting models was evaluated on the Snapdragon’s 8 Gen 1 GPU that provides excellent acceleration results for the majority of common deep learning ops. The proposed solutions are compatible with all recent mobile GPUs, being able to process Full HD photos in less than 20–50 ms while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.

关键词Cameras Deep learning Image enhancement Large dataset Program processors AI benchmark Deep learning Fujifilms Image signal processing Learned image signal processing Mobile AI Mobile AI challenge Mobile camera Photo enhancement Smart phones
会议名称17th European Conference on Computer Vision, ECCV 2022
会议地点Tel Aviv, Israel
会议日期October 23, 2022 - October 27, 2022
收录类别EI
语种英语
出版者Springer Science and Business Media Deutschland GmbH
EI入藏号20231413826863
EI主题词Smartphones
EISSN1611-3349
EI分类号461.4 Ergonomics and Human Factors Engineering ; 718.1 Telephone Systems and Equipment ; 723.2 Data Processing and Image Processing ; 742.2 Photographic Equipment
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/292237
专题信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Ignatov, Andrey
作者单位
1.Computer Vision Lab, ETH Zurich, Zurich, Switzerland;
2.AI Witchlabs, Zurich, Switzerland;
3.University of Wuerzburg, Wuerzburg, Germany;
4.Xiaomi Inc., Beijing, China;
5.Sanechips Co. Ltd., Shanghai, China;
6.ENERZAi, Seoul, Korea, Republic of;
7.Harbin Institute of Technology, Harbin, China;
8.Zhejiang University, Hangzhou, China;
9.University of Shanghai for Science and Technology, Shanghai, China;
10.Tsinghua University, Beijing, China;
11.Hongik University, Seoul, Korea, Republic of;
12.Institute of Automation, Chinese Academy of Sciences, Beijing, China;
13.School of Computer Science, Fudan University, Shanghai, China;
14.Washington University in St. Louis, Seattle, United States;
15.Moscow Institute of Physics and Technology, Moscow, Russia;
16.Alibaba DAMO Academy, Beijing, China;
17.ShanghaiTech University, Shanghai, China
推荐引用方式
GB/T 7714
Ignatov, Andrey,Timofte, Radu,Liu, Shuai,et al. Learned Smartphone ISP on Mobile GPUs with Deep Learning, Mobile AI & AIM 2022 Challenge: Report[C]:Springer Science and Business Media Deutschland GmbH,2023:44-70.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ignatov, Andrey]的文章
[Timofte, Radu]的文章
[Liu, Shuai]的文章
百度学术
百度学术中相似的文章
[Ignatov, Andrey]的文章
[Timofte, Radu]的文章
[Liu, Shuai]的文章
必应学术
必应学术中相似的文章
[Ignatov, Andrey]的文章
[Timofte, Radu]的文章
[Liu, Shuai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 978-3-031-25066-8.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。