消息
×
loading..
Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning
2023
发表期刊IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS (IF:4.0[JCR-2023],3.7[5-Year])
ISSN1549-7747
EISSN1558-3791
卷号70期号:9页码:1-1
发表状态已发表
DOI10.1109/TCSII.2023.3258700
摘要

Latency is one of the critical performance metrics for Networks-on-Chips (NoCs). When designing an NoC, the designers have to explore enormous design parameters and various traffic patterns, thus a fast and accurate latency estimator is essential to explore the large design space. In this paper, we present an ideal neural network-based methodology for latency estimation in NoCs, especially for application-specific traffics. By inputting the sequence of extracted traffic features and NoC parameters, the neural network model will infer the corresponding average network latency in a fast while accurate way. Instead of training one neural network model for each benchmark from scratch, we adopt transfer learning to train the network model for a new benchmark from another trained one. Experimental results on a set of widely used application-specific NoC benchmarks show that, our method can achieve an average estimation accuracy of 95%, and a 17.1X speedup for large NoCs compared to BookSim2 simulations. Our method can also achieve 20% to 70% improvement in accuracy over the other state-of-art machine learning-based works. IEEE

关键词Benchmarking Feature extraction Integrated circuit design Learning systems Network-on-chip Application specific Application-specific traffic Benchmark testing Features extraction Latency estimation Machine-learning Network-on-chip Networks on chips Neural-networks Transfer learning
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20231413849291
EI主题词Neural networks
EI分类号714.2 Semiconductor Devices and Integrated Circuits ; 721.3 Computer Circuits
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/292233
专题信息科学与技术学院
信息科学与技术学院_PI研究组_周平强组
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yang Li,Pingqiang Zhou. Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS,2023,70(9):1-1.
APA Yang Li,&Pingqiang Zhou.(2023).Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS,70(9),1-1.
MLA Yang Li,et al."Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 70.9(2023):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang Li]的文章
[Pingqiang Zhou]的文章
百度学术
百度学术中相似的文章
[Yang Li]的文章
[Pingqiang Zhou]的文章
必应学术
必应学术中相似的文章
[Yang Li]的文章
[Pingqiang Zhou]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。