| |||||||
ShanghaiTech University Knowledge Management System
Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning | |
2023 | |
发表期刊 | IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS (IF:4.0[JCR-2023],3.7[5-Year]) |
ISSN | 1549-7747 |
EISSN | 1558-3791 |
卷号 | 70期号:9页码:1-1 |
发表状态 | 已发表 |
DOI | 10.1109/TCSII.2023.3258700 |
摘要 | Latency is one of the critical performance metrics for Networks-on-Chips (NoCs). When designing an NoC, the designers have to explore enormous design parameters and various traffic patterns, thus a fast and accurate latency estimator is essential to explore the large design space. In this paper, we present an ideal neural network-based methodology for latency estimation in NoCs, especially for application-specific traffics. By inputting the sequence of extracted traffic features and NoC parameters, the neural network model will infer the corresponding average network latency in a fast while accurate way. Instead of training one neural network model for each benchmark from scratch, we adopt transfer learning to train the network model for a new benchmark from another trained one. Experimental results on a set of widely used application-specific NoC benchmarks show that, our method can achieve an average estimation accuracy of 95%, and a 17.1X speedup for large NoCs compared to BookSim2 simulations. Our method can also achieve 20% to 70% improvement in accuracy over the other state-of-art machine learning-based works. IEEE |
关键词 | Benchmarking Feature extraction Integrated circuit design Learning systems Network-on-chip Application specific Application-specific traffic Benchmark testing Features extraction Latency estimation Machine-learning Network-on-chip Networks on chips Neural-networks Transfer learning |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20231413849291 |
EI主题词 | Neural networks |
EI分类号 | 714.2 Semiconductor Devices and Integrated Circuits ; 721.3 Computer Circuits |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/292233 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_周平强组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yang Li,Pingqiang Zhou. Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning[J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS,2023,70(9):1-1. |
APA | Yang Li,&Pingqiang Zhou.(2023).Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning.IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS,70(9),1-1. |
MLA | Yang Li,et al."Fast and Accurate NoC Latency Estimation for Application-Specific Traffics Via Machine Learning".IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS 70.9(2023):1-1. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Yang Li]的文章 |
[Pingqiang Zhou]的文章 |
百度学术 |
百度学术中相似的文章 |
[Yang Li]的文章 |
[Pingqiang Zhou]的文章 |
必应学术 |
必应学术中相似的文章 |
[Yang Li]的文章 |
[Pingqiang Zhou]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。