ShanghaiTech University Knowledge Management System
Underwater Target Detection Based on Improved YOLOv7 | |
2023-03-01 | |
发表期刊 | JOURNAL OF MARINE SCIENCE AND ENGINEERING (IF:2.7[JCR-2023],2.8[5-Year]) |
EISSN | 2077-1312 |
卷号 | 11期号:3 |
发表状态 | 已发表 |
DOI | 10.3390/jmse11030677 |
摘要 | Underwater target detection is a crucial aspect of ocean exploration. However, conventional underwater target detection methods face several challenges such as inaccurate feature extraction, slow detection speed, and lack of robustness in complex underwater environments. To address these limitations, this study proposes an improved YOLOv7 network (YOLOv7-AC) for underwater target detection. The proposed network utilizes an ACmixBlock module to replace the 3 x 3 convolution block in the E-ELAN structure, and incorporates jump connections and 1 x 1 convolution architecture between ACmixBlock modules to improve feature extraction and network reasoning speed. Additionally, a ResNet-ACmix module is designed to avoid feature information loss and reduce computation, while a Global Attention Mechanism (GAM) is inserted in the backbone and head parts of the model to improve feature extraction. Furthermore, the K-means++ algorithm is used instead of K-means to obtain anchor boxes and enhance model accuracy. Experimental results show that the improved YOLOv7 network outperforms the original YOLOv7 model and other popular underwater target detection methods. The proposed network achieved a mean average precision (mAP) value of 89.6% and 97.4% on the URPC dataset and Brackish dataset, respectively, and demonstrated a higher frame per second (FPS) compared to the original YOLOv7 model. In conclusion, the improved YOLOv7 network proposed in this study represents a promising solution for underwater target detection and holds great potential for practical applications in various underwater tasks. |
关键词 | underwater target detection marine resources computer vision image analysis YOLOv7-AC GAM K-means++ |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Engineering ; Oceanography |
WOS类目 | Engineering, Marine ; Engineering, Ocean ; Oceanography |
WOS记录号 | WOS:000956713200001 |
出版者 | MDPI |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/292190 |
专题 | 生物医学工程学院_PI研究组_沈定刚组 |
通讯作者 | Peng, Lin; Yang, Mengduo; Wang, Nizhuan |
作者单位 | 1.Jiangsu Ocean Univ, Coinnovat Ctr Jiangsu Marine Bioind Technol, Jiangsu Key Lab Marine Bioresources & Environm, Jiangsu Key Lab Marine Biotechnol, Lianyungang 222005, Peoples R China 2.Jiangsu Ocean Univ, Sch Marine Technol & Geomat, Lianyungang 222005, Peoples R China 3.Soochow Univ, Prov Key Lab Comp Informat Proc Technol, Suzhou 215301, Peoples R China 4.Beijing KnowYou Technol Co Ltd, Beijing 100086, Peoples R China 5.Suzhou Inst Trade & Commerce, Sch Informat Technol, Suzhou 215009, Peoples R China 6.ShanghaiTech Univ, Sch Biomed Engn, Shanghai 201210, Peoples R China |
通讯作者单位 | 生物医学工程学院 |
推荐引用方式 GB/T 7714 | Liu, Kaiyue,Sun, Qi,Sun, Daming,et al. Underwater Target Detection Based on Improved YOLOv7[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2023,11(3). |
APA | Liu, Kaiyue,Sun, Qi,Sun, Daming,Peng, Lin,Yang, Mengduo,&Wang, Nizhuan.(2023).Underwater Target Detection Based on Improved YOLOv7.JOURNAL OF MARINE SCIENCE AND ENGINEERING,11(3). |
MLA | Liu, Kaiyue,et al."Underwater Target Detection Based on Improved YOLOv7".JOURNAL OF MARINE SCIENCE AND ENGINEERING 11.3(2023). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liu, Kaiyue]的文章 |
[Sun, Qi]的文章 |
[Sun, Daming]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liu, Kaiyue]的文章 |
[Sun, Qi]的文章 |
[Sun, Daming]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liu, Kaiyue]的文章 |
[Sun, Qi]的文章 |
[Sun, Daming]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。