Using Visualization to Improve Clustering Analysis on Heterogeneous Information Network
2018
会议录名称2018 22ND INTERNATIONAL CONFERENCE INFORMATION VISUALISATION (IV)
ISSN1550-6037
页码220-227
发表状态已发表
DOI10.1109/iV.2018.00046
摘要The exploration and analysis of data mining methodologies is an important task for effective knowledge discovery, especially in today's heterogeneous information networks. Previously presented approaches for mining optimization aim primarily at the improvements of time complexity, space complexity, accuracy, and robustness. We extend the state-of-the-art method by concentrating on user-availability and algorithm understandability. Specifically, we use Rankclus, a classic clustering algorithm as an example. After uncovering the unseen computing processes to be displayed in a visual form, the whole clustering processes are transparent to the users, which may help them more clearly and quickly understand how the algorithms are computed, how does each object influence one another. In addition, we use a density approach to intuitively simplify the discovery of data patterns, and through the visualized results, users can adjust algorithm parameters with or without professional training. Finally, we use another two visual techniques to improve the visualization quality: a heatmap matrix designed for checking the similarities of objects which are in the same cluster, and a DOItree implemented to further analyze the accuracy of the algorithms.
关键词data mining heterogeneous information networks visualization Rankclus
出版地345 E 47TH ST, NEW YORK, NY 10017 USA
会议地点Salerno, Italy
会议日期10-13 July 2018
URL查看原文
收录类别CPCI ; CPCI-S ; EI
语种英语
资助项目National Natural Science Foundation of China[61502306]
WOS研究方向Computer Science
WOS类目Computer Science, Theory & Methods
WOS记录号WOS:000460565700037
出版者IEEE
EI入藏号20190406405517
EI主题词Complex networks ; Data mining ; Information services ; Visualization
EI分类号Computer Systems and Equipment:722 ; Data Processing and Image Processing:723.2 ; Information Sources and Analysis:903.1 ; Information Services:903.4
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/29149
专题信息科学与技术学院_PI研究组_刘晓培组
信息科学与技术学院_PI研究组_郑友怡组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Liu, Xiaopei; Zheng, Youyi
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Jilin Univ, Changchun, Jilin, Peoples R China
3.Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Wang, Wenbo,Li, Yuwei,Wang, Feng,et al. Using Visualization to Improve Clustering Analysis on Heterogeneous Information Network[C]. 345 E 47TH ST, NEW YORK, NY 10017 USA:IEEE,2018:220-227.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Wenbo]的文章
[Li, Yuwei]的文章
[Wang, Feng]的文章
百度学术
百度学术中相似的文章
[Wang, Wenbo]的文章
[Li, Yuwei]的文章
[Wang, Feng]的文章
必应学术
必应学术中相似的文章
[Wang, Wenbo]的文章
[Li, Yuwei]的文章
[Wang, Feng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 29149.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。