ShanghaiTech University Knowledge Management System
Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos | |
2023 | |
会议录名称 | THE IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION(CVPR)
![]() |
ISSN | 1063-6919 |
卷号 | 2023-June |
页码 | 76-87 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52729.2023.00016 |
摘要 | The success of the Neural Radiance Fields (NeRFs) for modeling and free-view rendering static objects has in-spired numerous attempts on dynamic scenes. Current techniques that utilize neural rendering for facilitating free-view videos (FVVs) are restricted to either offline rendering or are capable of processing only brief sequences with minimal motion. In this paper, we present a novel technique, Residual Radiance Field or ReRF, as a highly com-pact neural representation to achieve real-time FVV ren-dering on long-duration dynamic scenes. ReRF explicitly models the residual information between adjacent times-tamps in the spatial-temporal feature space, with a global coordinate-based tiny MLP as the feature decoder. Specif-ically, ReRF employs a compact motion grid along with a residual feature grid to exploit inter-frame feature similar-ities. We show such a strategy can handle large motions without sacrificing quality. We further present a sequential training scheme to maintain the smoothness and the spar-sity of the motion/residual grids. Based on ReRF, we design a special FVV codec that achieves three orders of magni-tudes compression rate and provides a companion ReRF player to support online streaming of long-duration FVVs of dynamic scenes. Extensive experiments demonstrate the effectiveness of ReRF for compactly representing dynamic radiance fields, enabling an unprecedented free-viewpoint viewing experience in speed and quality. © 2023 IEEE. |
会议录编者/会议主办者 | Amazon Science ; Ant Research ; Cruise ; et al. ; Google ; Lambda |
关键词 | Humans: Face body pose gesture movement |
会议名称 | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023 |
会议地点 | Vancouver, BC, Canada |
会议日期 | 17-24 June 2023 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20234114868051 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/287891 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_许岚组 |
作者单位 | 1.ShanghaiTech University 2.KU Leuven |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Liao Wang,Qiang Hu,Qihan He,et al. Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos[C]//Amazon Science, Ant Research, Cruise, et al., Google, Lambda:IEEE Computer Society,2023:76-87. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Liao Wang]的文章 |
[Qiang Hu]的文章 |
[Qihan He]的文章 |
百度学术 |
百度学术中相似的文章 |
[Liao Wang]的文章 |
[Qiang Hu]的文章 |
[Qihan He]的文章 |
必应学术 |
必应学术中相似的文章 |
[Liao Wang]的文章 |
[Qiang Hu]的文章 |
[Qihan He]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。