Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos
2023
会议录名称THE IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION(CVPR)
ISSN1063-6919
卷号2023-June
页码76-87
发表状态已发表
DOI10.1109/CVPR52729.2023.00016
摘要The success of the Neural Radiance Fields (NeRFs) for modeling and free-view rendering static objects has in-spired numerous attempts on dynamic scenes. Current techniques that utilize neural rendering for facilitating free-view videos (FVVs) are restricted to either offline rendering or are capable of processing only brief sequences with minimal motion. In this paper, we present a novel technique, Residual Radiance Field or ReRF, as a highly com-pact neural representation to achieve real-time FVV ren-dering on long-duration dynamic scenes. ReRF explicitly models the residual information between adjacent times-tamps in the spatial-temporal feature space, with a global coordinate-based tiny MLP as the feature decoder. Specif-ically, ReRF employs a compact motion grid along with a residual feature grid to exploit inter-frame feature similar-ities. We show such a strategy can handle large motions without sacrificing quality. We further present a sequential training scheme to maintain the smoothness and the spar-sity of the motion/residual grids. Based on ReRF, we design a special FVV codec that achieves three orders of magni-tudes compression rate and provides a companion ReRF player to support online streaming of long-duration FVVs of dynamic scenes. Extensive experiments demonstrate the effectiveness of ReRF for compactly representing dynamic radiance fields, enabling an unprecedented free-viewpoint viewing experience in speed and quality. © 2023 IEEE.
会议录编者/会议主办者Amazon Science ; Ant Research ; Cruise ; et al. ; Google ; Lambda
关键词Humans: Face body pose gesture movement
会议名称2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
会议地点Vancouver, BC, Canada
会议日期17-24 June 2023
URL查看原文
收录类别EI
语种英语
出版者IEEE Computer Society
EI入藏号20234114868051
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/287891
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_许岚组
作者单位
1.ShanghaiTech University
2.KU Leuven
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Liao Wang,Qiang Hu,Qihan He,et al. Neural Residual Radiance Fields for Streamably Free-Viewpoint Videos[C]//Amazon Science, Ant Research, Cruise, et al., Google, Lambda:IEEE Computer Society,2023:76-87.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liao Wang]的文章
[Qiang Hu]的文章
[Qihan He]的文章
百度学术
百度学术中相似的文章
[Liao Wang]的文章
[Qiang Hu]的文章
[Qihan He]的文章
必应学术
必应学术中相似的文章
[Liao Wang]的文章
[Qiang Hu]的文章
[Qihan He]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。