Online Convex Optimization with Hard Constraints: Towards the Best of Two Worlds and Beyond.
2022-12
会议录名称NEURIPS 2022
ISSN1049-5258
卷号35
发表状态已发表
摘要

This paper considers online convex optimization with hard constraints and analyzes achievable regret and cumulative hard constraint violation (violation for short). The problem distinguishes itself from online convex optimization with soft constraints, where a violation at one round can be compensated/cancelled by a conservative decision at a different round. We propose a RECtified Online Optimization algorithm (RECOO) and consider two settings: fixed constraints and adversarial constraints. Both settings have been considered in the literature. Compared with existing results, RECOO achieves the best of two worlds and beyond. For the fixed-constraints setting, RECOO achieves (Equation presented) regret and O(1) violation, where T is the learning horizon. The best known results in this case are (Equation presented) regret and (Equation presented) violation. For the adversarial-constraints setting, it guarantees (Equation presented) regret and (Equation presented) violation, which match the best existing results. When the loss function is strongly convex, RECOO can guarantee O(log T) regret and O(1) violation for fixed constraints, and O(log T) regret and (Equation presented) violation for adversarial constraints. Both these results are order-wise better than the existing bounds. The regret and violation bounds mentioned above use the best fixed decision in hindsight as the baseline. This paper further considers a dynamic baseline where the comparator sequence is time-varying. This paper shows that RECOO not only improves the existing bounds for the fixed-constraints setting but also for the first time, establishes dynamic regret and violation bounds for the adversarial-constraints setting. Our experiment results confirm that RECOO outperforms several existing algorithms for both fixed and adversarial constraints. © 2022 Neural information processing systems foundation. All rights reserved.

关键词Constraint violation Hard constraints Loss functions Online convex optimizations Online optimization algorithms Soft constraint Time varying
会议名称36th Conference on Neural Information Processing Systems, NeurIPS 2022
出版地10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA
会议地点New Orleans, LA, United states
会议日期November 28, 2022 - December 9, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems
WOS记录号WOS:001213927506044
出版者Neural information processing systems foundation
EI入藏号20232614295604
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/286579
专题信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_刘鑫组
通讯作者Guo Hengquan
作者单位
1.ShanghaiTech University
2.University of Michigan
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Guo Hengquan,Liu X,Wei Honghao,et al. Online Convex Optimization with Hard Constraints: Towards the Best of Two Worlds and Beyond.[C]. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:Neural information processing systems foundation,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Guo Hengquan]的文章
[Liu X(刘鑫)]的文章
[Wei Honghao]的文章
百度学术
百度学术中相似的文章
[Guo Hengquan]的文章
[Liu X(刘鑫)]的文章
[Wei Honghao]的文章
必应学术
必应学术中相似的文章
[Guo Hengquan]的文章
[Liu X(刘鑫)]的文章
[Wei Honghao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。