| |||||||
ShanghaiTech University Knowledge Management System
A Stochastic Second-Order Proximal Method for Distributed Optimization | |
2023 | |
发表期刊 | IEEE CONTROL SYSTEMS LETTERS (IF:2.4[JCR-2023],2.4[5-Year]) |
ISSN | 2475-1456 |
EISSN | 2475-1456 |
卷号 | 7页码:1405-1410 |
发表状态 | 已发表 |
DOI | 10.1109/LCSYS.2023.3244740 |
摘要 | We propose a distributed stochastic second-order proximal (St-SoPro) method that enables agents in a network to cooperatively minimize the sum of their local loss functions without any centralized coordination. St-SoPro incorporates a decentralized second-order approximation into an augmented Lagrangian function, and randomly samples the local gradients and Hessian matrices to update, so that it is efficient in solving large-scale problems. We show that for restricted strongly convex and smooth problems, the agents linearly converge in expectation to a neighborhood of the optimum, and the neighborhood can be arbitrarily small under proper parameter settings. Simulations over real machine learning datasets demonstrate that St-SoPro outperforms several state-of-the-art methods in terms of convergence speed as well as computation and communication costs. © 2017 IEEE. |
关键词 | Constrained optimization Learning systems Centralised Distributed optimization Local loss Loss functions Neighbourhood Proximal methods Second orders Second-order methods Stochastic optimizations Stochastics |
URL | 查看原文 |
收录类别 | EI ; SCOPUS |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20231013663333 |
EI主题词 | Stochastic systems |
EI分类号 | 731.1 Control Systems ; 961 Systems Science |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/284263 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_陆疌组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 |
通讯作者 | Jie Lu |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.Department of Automation and the Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China 3.School of Information Science and Technology and the Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chenyang Qiu,Shanying Zhu,Zichong Ou,et al. A Stochastic Second-Order Proximal Method for Distributed Optimization[J]. IEEE CONTROL SYSTEMS LETTERS,2023,7:1405-1410. |
APA | Chenyang Qiu,Shanying Zhu,Zichong Ou,&Jie Lu.(2023).A Stochastic Second-Order Proximal Method for Distributed Optimization.IEEE CONTROL SYSTEMS LETTERS,7,1405-1410. |
MLA | Chenyang Qiu,et al."A Stochastic Second-Order Proximal Method for Distributed Optimization".IEEE CONTROL SYSTEMS LETTERS 7(2023):1405-1410. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。