消息
×
loading..
A Stochastic Second-Order Proximal Method for Distributed Optimization
2023
发表期刊IEEE CONTROL SYSTEMS LETTERS (IF:2.4[JCR-2023],2.4[5-Year])
ISSN2475-1456
EISSN2475-1456
卷号7页码:1405-1410
发表状态已发表
DOI10.1109/LCSYS.2023.3244740
摘要

We propose a distributed stochastic second-order proximal (St-SoPro) method that enables agents in a network to cooperatively minimize the sum of their local loss functions without any centralized coordination. St-SoPro incorporates a decentralized second-order approximation into an augmented Lagrangian function, and randomly samples the local gradients and Hessian matrices to update, so that it is efficient in solving large-scale problems. We show that for restricted strongly convex and smooth problems, the agents linearly converge in expectation to a neighborhood of the optimum, and the neighborhood can be arbitrarily small under proper parameter settings. Simulations over real machine learning datasets demonstrate that St-SoPro outperforms several state-of-the-art methods in terms of convergence speed as well as computation and communication costs. © 2017 IEEE.

关键词Constrained optimization Learning systems Centralised Distributed optimization Local loss Loss functions Neighbourhood Proximal methods Second orders Second-order methods Stochastic optimizations Stochastics
URL查看原文
收录类别EI ; SCOPUS
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20231013663333
EI主题词Stochastic systems
EI分类号731.1 Control Systems ; 961 Systems Science
原始文献类型Journal article (JA)
来源库IEEE
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/284263
专题信息科学与技术学院
信息科学与技术学院_PI研究组_陆疌组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
通讯作者Jie Lu
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.Department of Automation and the Key Laboratory of System Control and Information Processing, Shanghai Jiao Tong University, Shanghai, China
3.School of Information Science and Technology and the Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chenyang Qiu,Shanying Zhu,Zichong Ou,et al. A Stochastic Second-Order Proximal Method for Distributed Optimization[J]. IEEE CONTROL SYSTEMS LETTERS,2023,7:1405-1410.
APA Chenyang Qiu,Shanying Zhu,Zichong Ou,&Jie Lu.(2023).A Stochastic Second-Order Proximal Method for Distributed Optimization.IEEE CONTROL SYSTEMS LETTERS,7,1405-1410.
MLA Chenyang Qiu,et al."A Stochastic Second-Order Proximal Method for Distributed Optimization".IEEE CONTROL SYSTEMS LETTERS 7(2023):1405-1410.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chenyang Qiu]的文章
[Shanying Zhu]的文章
[Zichong Ou]的文章
百度学术
百度学术中相似的文章
[Chenyang Qiu]的文章
[Shanying Zhu]的文章
[Zichong Ou]的文章
必应学术
必应学术中相似的文章
[Chenyang Qiu]的文章
[Shanying Zhu]的文章
[Zichong Ou]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@LCSYS.2023.3244740.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。