ShanghaiTech University Knowledge Management System
Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires | |
2017-07-28 | |
发表期刊 | NANOSCALE RESEARCH LETTERS (IF:5.5[JCR-2023],5.5[5-Year]) |
ISSN | 1556-276X |
卷号 | 12 |
发表状态 | 已发表 |
DOI | 10.1186/s11671-017-2243-1 |
摘要 | We theoretically investigate highly tensile-strained Ge nanowires laterally on GaSb. Finite element method has been used to simulate the residual elastic strain in the Ge nanowire. The total energy increment including strain energy, surface energy, and edge energy before and after Ge deposition is calculated in different situations. The result indicates that the Ge nanowire on GaSb is apt to grow along < 100 > rather than < 110 > in the two situations and prefers to be exposed by {105} facets when deposited a small amount of Ge but to be exposed by {110} when the amount of Ge exceeds a critical value. Furthermore, the conduction band minima in Gamma-valley at any position in both situations exhibits lower values than those in L-valley, leading to direct bandgap transition in Ge nanowire. For the valence band, the light hole band maxima at Gamma-point is higher than the heavy hole band maxima at any position and even higher than the conduction band minima for the hydrostatic strain more than similar to 5.0%, leading to a negative bandgap. In addition, both electron and hole mobility can be enhanced by owing to the decrease of the effective mass under highly tensile strain. The results suggest that biaxially tensile-strained Ge nanowires hold promising properties in device applications. |
关键词 | Tensile strain Ge nanowire Finite element method Direct bandgap Mobility |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | Creative Research Group Project of Natural Science Foundation of China[61321492] |
WOS研究方向 | Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied |
WOS记录号 | WOS:000406838000002 |
出版者 | SPRINGER |
EI入藏号 | 20173104010397 |
EI主题词 | Carrier mobility ; Conduction bands ; Energy gap ; Finite element method ; Germanium ; Hole mobility ; Nanowires ; Semiconductor quantum wells |
EI分类号 | Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3 ; Semiconducting Materials:712.1 ; Semiconductor Devices and Integrated Circuits:714.2 ; Nanotechnology:761 ; Numerical Methods:921.6 ; Mechanics:931.1 ; High Energy Physics:932.1 ; Solid State Physics:933 |
WOS关键词 | FIELD-EFFECT TRANSISTORS ; QUANTUM DOTS ; SURFACE-ENERGY ; LIGHT-EMISSION ; GE NANOWIRES ; HETEROSTRUCTURES ; GROWTH ; SI |
原始文献类型 | Article |
通讯作者 | Song, Yuxin ; Wang, Shumin |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2841 |
专题 | 物质科学与技术学院 信息科学与技术学院_特聘教授组_王庶民组 物质科学与技术学院_硕士生 物质科学与技术学院_博士生 |
通讯作者 | Song, Yuxin; Wang, Shumin |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China 2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100190, Peoples R China 4.Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden |
第一作者单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhu, Zhongyunshen,Song, Yuxin,Chen, Qimiao,et al. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires[J]. NANOSCALE RESEARCH LETTERS,2017,12. |
APA | Zhu, Zhongyunshen.,Song, Yuxin.,Chen, Qimiao.,Zhang, Zhenpu.,Zhang, Liyao.,...&Wang, Shumin.(2017).Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires.NANOSCALE RESEARCH LETTERS,12. |
MLA | Zhu, Zhongyunshen,et al."Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires".NANOSCALE RESEARCH LETTERS 12(2017). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。