Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires
2017-07-28
发表期刊NANOSCALE RESEARCH LETTERS (IF:5.5[JCR-2023],5.5[5-Year])
ISSN1556-276X
卷号12
发表状态已发表
DOI10.1186/s11671-017-2243-1
摘要We theoretically investigate highly tensile-strained Ge nanowires laterally on GaSb. Finite element method has been used to simulate the residual elastic strain in the Ge nanowire. The total energy increment including strain energy, surface energy, and edge energy before and after Ge deposition is calculated in different situations. The result indicates that the Ge nanowire on GaSb is apt to grow along < 100 > rather than < 110 > in the two situations and prefers to be exposed by {105} facets when deposited a small amount of Ge but to be exposed by {110} when the amount of Ge exceeds a critical value. Furthermore, the conduction band minima in Gamma-valley at any position in both situations exhibits lower values than those in L-valley, leading to direct bandgap transition in Ge nanowire. For the valence band, the light hole band maxima at Gamma-point is higher than the heavy hole band maxima at any position and even higher than the conduction band minima for the hydrostatic strain more than similar to 5.0%, leading to a negative bandgap. In addition, both electron and hole mobility can be enhanced by owing to the decrease of the effective mass under highly tensile strain. The results suggest that biaxially tensile-strained Ge nanowires hold promising properties in device applications.
关键词Tensile strain Ge nanowire Finite element method Direct bandgap Mobility
收录类别SCI ; EI
语种英语
资助项目Creative Research Group Project of Natural Science Foundation of China[61321492]
WOS研究方向Science & Technology - Other Topics ; Materials Science ; Physics
WOS类目Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000406838000002
出版者SPRINGER
EI入藏号20173104010397
EI主题词Carrier mobility ; Conduction bands ; Energy gap ; Finite element method ; Germanium ; Hole mobility ; Nanowires ; Semiconductor quantum wells
EI分类号Nonferrous Metals and Alloys excluding Alkali and Alkaline Earth Metals:549.3 ; Semiconducting Materials:712.1 ; Semiconductor Devices and Integrated Circuits:714.2 ; Nanotechnology:761 ; Numerical Methods:921.6 ; Mechanics:931.1 ; High Energy Physics:932.1 ; Solid State Physics:933
WOS关键词FIELD-EFFECT TRANSISTORS ; QUANTUM DOTS ; SURFACE-ENERGY ; LIGHT-EMISSION ; GE NANOWIRES ; HETEROSTRUCTURES ; GROWTH ; SI
原始文献类型Article
通讯作者Song, Yuxin ; Wang, Shumin
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2841
专题物质科学与技术学院
信息科学与技术学院_特聘教授组_王庶民组
物质科学与技术学院_硕士生
物质科学与技术学院_博士生
通讯作者Song, Yuxin; Wang, Shumin
作者单位
1.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Funct Mat Informat, Shanghai 200050, Peoples R China
2.ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100190, Peoples R China
4.Chalmers, Dept Microtechnol & Nanosci, S-41296 Gothenburg, Sweden
第一作者单位物质科学与技术学院
推荐引用方式
GB/T 7714
Zhu, Zhongyunshen,Song, Yuxin,Chen, Qimiao,et al. Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires[J]. NANOSCALE RESEARCH LETTERS,2017,12.
APA Zhu, Zhongyunshen.,Song, Yuxin.,Chen, Qimiao.,Zhang, Zhenpu.,Zhang, Liyao.,...&Wang, Shumin.(2017).Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires.NANOSCALE RESEARCH LETTERS,12.
MLA Zhu, Zhongyunshen,et al."Theoretical Investigation of Biaxially Tensile-Strained Germanium Nanowires".NANOSCALE RESEARCH LETTERS 12(2017).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Zhongyunshen]的文章
[Song, Yuxin]的文章
[Chen, Qimiao]的文章
百度学术
百度学术中相似的文章
[Zhu, Zhongyunshen]的文章
[Song, Yuxin]的文章
[Chen, Qimiao]的文章
必应学术
必应学术中相似的文章
[Zhu, Zhongyunshen]的文章
[Song, Yuxin]的文章
[Chen, Qimiao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2841.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。