| |||||||
ShanghaiTech University Knowledge Management System
Markov State Transition Modeling in Complex High-Dimensional State Space Based on Fuzzy Integral | |
2022 | |
会议录名称 | 2022 IEEE GLOBECOM WORKSHOPS, GC WKSHPS 2022 - PROCEEDINGS |
页码 | 916-921 |
发表状态 | 已发表 |
DOI | 10.1109/GCWkshps56602.2022.10008684 |
摘要 | The extremely high business volume of the financial industry brings unaffordable operating pressure to the back-end data system of financial companies. Recently, data-driven deep learning algorithms have achieved breakthroughs in analyzing and predicting system anomalies. However, in the case of high-dimensional data, deep learning faces the problems of long training time, lack of explainability and transferability. In this paper, we propose a model based on fuzzy integral for observing and modeling the state of the system. Firstly, the fuzzy integral algorithm has lower complexity, which is more suitable for the time-sensitive financial industry. Then, based on the fuzzy integral, the vector composed of the fuzzy measures of all the features is used to represent the state of the system. It is proved that the system constructed by this modeling method has the Markov property. Moreover, compared with deep learning, fuzzy integral-based methods are not only more computationally efficient but also explainable and transferable. Experimentally, we use the actual data of securities companies and have better results in the systematic anomaly analysis. © 2022 IEEE. |
关键词 | nomaly detection Clustering algorithms Computational complexity Deep learning Finance Integral equations Learning systems Sales Anomaly detection Choquet fuzzy integral Financial industry Fuzzy integral High-dimensional Higher-dimensional Markov state Markov-chain-based state space State-space State-transition model |
会议名称 | 2022 IEEE GLOBECOM Workshops, GC Wkshps 2022 |
会议地点 | Virtual, Online, Brazil |
会议日期 | December 4, 2022 - December 8, 2022 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20230513459380 |
EI主题词 | Learning algorithms |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.4.2 Machine Learning ; 903.1 Information Sources and Analysis ; 921.2 Calculus |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282100 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_杨旸组 信息科学与技术学院_PI研究组_周勇组 信息科学与技术学院_硕士生 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University 2.National University of Defense Technology |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jinhan Guo,Kai Li,Hanhui Li,et al. Markov State Transition Modeling in Complex High-Dimensional State Space Based on Fuzzy Integral[C]:Institute of Electrical and Electronics Engineers Inc.,2022:916-921. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jinhan Guo]的文章 |
[Kai Li]的文章 |
[Hanhui Li]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jinhan Guo]的文章 |
[Kai Li]的文章 |
[Hanhui Li]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jinhan Guo]的文章 |
[Kai Li]的文章 |
[Hanhui Li]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。