| |||||||
ShanghaiTech University Knowledge Management System
Information Bottleneck Based Joint Feedback and Channel Learning in FDD Massive MIMO Systems | |
2022 | |
会议录名称 | 2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE, GLOBECOM 2022 - PROCEEDINGS |
ISSN | 1930-529X |
页码 | 1442-1447 |
发表状态 | 已发表 |
DOI | 10.1109/GLOBECOM48099.2022.10000973 |
摘要 | Channel sate acquisition in frequency-division du-plexing (FDD) massive MIMO system is challenging due to the huge feedback overhead. Machine learning (ML) has emerged as a powerful technology to address this challenge. In this paper, we resort to information bottleneck (IB) theoretical principle to design a joint feedback compression, quantization and channel learning algorithm in FDD massive MIMO systems, called IBNet. Compared to the existing ML-based designs, the proposed IBNet can systematically seek for the optimal balance between the channel estimation accuracy and feedback overhead. To auto-matically learn the feedback compression, a sparsity inducing prior is utilized to sparsify the feature vector, thereby reducing the feedback overhead significantly. Furthermore, to improve the generality of proposed IBNet, we propose an adaptive IBNet, which can adapt to different channel conditions with one neural network. Simulation results show that the proposed scheme significantly reduces the feedback overhead, meanwhile improving the channel estimation accuracy. © 2022 IEEE. |
关键词 | Channel estimation Cost reduction Frequency division multiplexing Learning algorithms Learning systems Compression channels Compression quantization Feedback channel Feedback compressions Feedback overhead Feedback quantization Frequency division Information bottleneck Machine-learning Optimal balance |
会议名称 | 2022 IEEE Global Communications Conference, GLOBECOM 2022 |
会议地点 | Virtual, Online, Brazil |
会议日期 | December 4, 2022 - December 8, 2022 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20230513465286 |
EI主题词 | MIMO systems |
EI分类号 | 723.4.2 Machine Learning |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282079 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_廉黎祥组 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Jiaqi Cao,Lixiang Lian. Information Bottleneck Based Joint Feedback and Channel Learning in FDD Massive MIMO Systems[C]:Institute of Electrical and Electronics Engineers Inc.,2022:1442-1447. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jiaqi Cao]的文章 |
[Lixiang Lian]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jiaqi Cao]的文章 |
[Lixiang Lian]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jiaqi Cao]的文章 |
[Lixiang Lian]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。