ShanghaiTech University Knowledge Management System
Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation | |
2022-09-19 | |
会议录名称 | ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES |
ISSN | 1527-1366 |
发表状态 | 已发表 |
DOI | 10.1145/3551349.3556902 |
摘要 | Unit testing is a critical part of software development process, ensuring the correctness of basic programming units in a program (e.g., a method). Search-based software testing (SBST) is an automated approach to generating test cases. SBST generates test cases with genetic algorithms by specifying the coverage criterion (e.g., branch coverage). However, a good test suite must have different properties, which cannot be captured by using an individual coverage criterion. Therefore, the state-of-the-art approach combines multiple criteria to generate test cases. As combining multiple coverage criteria brings multiple objectives for optimization, it hurts the test suites' coverage for certain criteria compared with using the single criterion. To cope with this problem, we propose a novel approach named smart selection. Based on the coverage correlations among criteria and the coverage goals' subsumption relationships, smart selection selects a subset of coverage goals to reduce the number of optimization objectives and avoid missing any properties of all criteria. We conduct experiments to evaluate smart selection on 400 Java classes with three state-of-the-art genetic algorithms. On average, smart selection outperforms combining all goals on of the classes having significant differences between the two approaches. © 2022 ACM. |
关键词 | Software design Software testing Coverage criteria Multiple coverages Optimisations Property Search-based Search-based software testing Software testings Test case Test generations Unit test generations |
会议名称 | 37th IEEE/ACM International Conference on Automated Software Engineering |
出版地 | 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES |
会议地点 | Rochester, MI, USA |
会议日期 | October 10, 2022 - October 14, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | Shanghai Pujiang Program[21PJ1410700] ; National Natural Science Foundation of China[62172205] ; Science, Technology and Innovation Commission of Shenzhen Municipality[CJGJZD20200617103001003] |
WOS研究方向 | Automation & Control Systems ; Computer Science |
WOS类目 | Automation & Control Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods |
WOS记录号 | WOS:001062775200010 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20230513464567 |
EI主题词 | Genetic algorithms |
EI分类号 | 723.1 Computer Programming ; 723.5 Computer Applications |
原始文献类型 | Conference article (CA) |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282057 |
专题 | 信息科学与技术学院 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_唐宇田组 |
通讯作者 | Tang, Yutian |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China 3.ShanghaiTech Univ, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Zhou, Zhichao,Zhou, Yuming,Fang, Chunrong,et al. Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery,2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。