Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation
2022-09-19
会议录名称ACM INTERNATIONAL CONFERENCE PROCEEDING SERIES
ISSN1527-1366
发表状态已发表
DOI10.1145/3551349.3556902
摘要

Unit testing is a critical part of software development process, ensuring the correctness of basic programming units in a program (e.g., a method). Search-based software testing (SBST) is an automated approach to generating test cases. SBST generates test cases with genetic algorithms by specifying the coverage criterion (e.g., branch coverage). However, a good test suite must have different properties, which cannot be captured by using an individual coverage criterion. Therefore, the state-of-the-art approach combines multiple criteria to generate test cases. As combining multiple coverage criteria brings multiple objectives for optimization, it hurts the test suites' coverage for certain criteria compared with using the single criterion. To cope with this problem, we propose a novel approach named smart selection. Based on the coverage correlations among criteria and the coverage goals' subsumption relationships, smart selection selects a subset of coverage goals to reduce the number of optimization objectives and avoid missing any properties of all criteria. We conduct experiments to evaluate smart selection on 400 Java classes with three state-of-the-art genetic algorithms. On average, smart selection outperforms combining all goals on of the classes having significant differences between the two approaches. © 2022 ACM.

关键词Software design Software testing Coverage criteria Multiple coverages Optimisations Property Search-based Search-based software testing Software testings Test case Test generations Unit test generations
会议名称37th IEEE/ACM International Conference on Automated Software Engineering
出版地1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES
会议地点Rochester, MI, USA
会议日期October 10, 2022 - October 14, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Shanghai Pujiang Program[21PJ1410700] ; National Natural Science Foundation of China[62172205] ; Science, Technology and Innovation Commission of Shenzhen Municipality[CJGJZD20200617103001003]
WOS研究方向Automation & Control Systems ; Computer Science
WOS类目Automation & Control Systems ; Computer Science, Software Engineering ; Computer Science, Theory & Methods
WOS记录号WOS:001062775200010
出版者Association for Computing Machinery
EI入藏号20230513464567
EI主题词Genetic algorithms
EI分类号723.1 Computer Programming ; 723.5 Computer Applications
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282057
专题信息科学与技术学院
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_唐宇田组
通讯作者Tang, Yutian
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Nanjing Univ, State Key Lab Novel Software Technol, Nanjing, Peoples R China
3.ShanghaiTech Univ, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位上海科技大学
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhou, Zhichao,Zhou, Yuming,Fang, Chunrong,et al. Selectively Combining Multiple Coverage Goals in Search-Based Unit Test Generation[C]. 1601 Broadway, 10th Floor, NEW YORK, NY, UNITED STATES:Association for Computing Machinery,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhou, Zhichao]的文章
[Zhou, Yuming]的文章
[Fang, Chunrong]的文章
百度学术
百度学术中相似的文章
[Zhou, Zhichao]的文章
[Zhou, Yuming]的文章
[Fang, Chunrong]的文章
必应学术
必应学术中相似的文章
[Zhou, Zhichao]的文章
[Zhou, Yuming]的文章
[Fang, Chunrong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。