DearKD: Data-Efficient Early Knowledge Distillation for Vision Transformers
2022-06-24
会议录名称2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)
ISSN1063-6919
发表状态已发表
DOI10.1109/CVPR52688.2022.01174
摘要Transformers are successfully applied to computer vision due to their powerful modeling capacity with self-attention. However, the excellent performance of transformers heavily depends on enormous training images. Thus, a data-efficient transformer solution is urgently needed. In this work, we propose an early knowledge distillation framework, which is termed as DearKD, to improve the data efficiency required by transformers. Our DearKD is a two-stage framework that first distills the inductive biases from the early intermediate layers of a CNN and then gives the transformer full play by training without distillation. Further, our DearKD can be readily applied to the extreme data-free case where no real images are available. In this case, we propose a boundary-preserving intra-divergence loss based on DeepInversion to further close the performance gap against the full-data counterpart. Extensive experiments on ImageNet, partial ImageNet, data-free setting and other downstream tasks prove the superiority of DearKD over its baselines and state-of-the-art methods.
关键词Deep learning architectures and techniques Optimization methods
会议地点New Orleans, LA, USA
会议日期18-24 June 2022
URL查看原文
收录类别EI
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282041
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_高盛华组
作者单位
1.ShanghaiTech University, China;
2.Jd Explore Academy;
3.Meituan Inc.;
4.The University of Sydney, Australia;
5.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China;
6.Shanghai Engineering Research Center of Energy Efficient and Custom Ai Ic, China
第一作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Chen, Xianing,Cao, Qiong,Zhong, Yujie,et al. DearKD: Data-Efficient Early Knowledge Distillation for Vision Transformers[C],2022.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Xianing]的文章
[Cao, Qiong]的文章
[Zhong, Yujie]的文章
百度学术
百度学术中相似的文章
[Chen, Xianing]的文章
[Cao, Qiong]的文章
[Zhong, Yujie]的文章
必应学术
必应学术中相似的文章
[Chen, Xianing]的文章
[Cao, Qiong]的文章
[Zhong, Yujie]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52688.2022.01174.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。