ShanghaiTech University Knowledge Management System
Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers | |
2023-11-01 | |
发表期刊 | IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS (IF:4.3[JCR-2023],4.4[5-Year]) |
ISSN | 1077-260X |
EISSN | 1558-4542 |
卷号 | 29期号:6 |
发表状态 | 已发表 |
DOI | 10.1109/JSTQE.2022.3228234 |
摘要 | Reservoir computing is a simplified recurrent neural network, which requires training only at the output layer and hence significantly reduces the training cost. Time-delay reservoir computing (TDRC) introduces a large number of virtual neurons based on a single physical neuron and a feedback loop, which is friendly for hardware implementations. This work proposes a scheme for implementing the deep TDRC architecture based on cascading injection-locked semiconductor lasers. In each layer, the reservoir consists of a quantum dot laser and an optical feedback loop. The output of each reservoir layer is fed into the subsequent one through the optical injection-locking technique. This all-optical approach (for reservoir layers) has the merit of high scalability without any depth limitation. Theoretical analysis shows that the deep TDRC improves the performance on multiple benchmark tasks, including the memory capacity, the prediction of chaos, the nonlinear channel equalization, and the recognition of spoken digits. |
关键词 | Reservoir computing Deep neural network Semiconductor lasers Optical feedback Optical injection Nonlinear dynamics |
URL | 查看原文 |
收录类别 | SCIE ; EI |
语种 | 英语 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20225213306713 |
EI主题词 | Neurons |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 461.9 Biology ; 713 Electronic Circuits ; 714.2 Semiconductor Devices and Integrated Circuits ; 741.1.1 Nonlinear Optics ; 744.4.1 Semiconductor Lasers ; 761 Nanotechnology ; 921 Mathematics ; 931 Classical Physics ; Quantum Theory ; Relativity ; 933.1 Crystalline Solids |
原始文献类型 | Journal article (JA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282001 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_PI研究组_王成组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_博士生 |
通讯作者 | Wang, Cheng |
作者单位 | 1.ShanghaiTech University, School of Information Science and Technology, Shanghai; 201210, China; 2.ShanghaiTech University, School of Information Science and Technology, Shanghai Engineering Research Center of Energy Efficient and Custom Ai Ic, Shanghai; 201210, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Lin, Bao-De,Shen, Yi-Wei,Tang, Jia-Yan,et al. Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers[J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2023,29(6). |
APA | Lin, Bao-De,Shen, Yi-Wei,Tang, Jia-Yan,Yu, Jingyi,He, Xuming,&Wang, Cheng.(2023).Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers.IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,29(6). |
MLA | Lin, Bao-De,et al."Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers".IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 29.6(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。