Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers
2023-11-01
发表期刊IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS (IF:4.3[JCR-2023],4.4[5-Year])
ISSN1077-260X
EISSN1558-4542
卷号29期号:6
发表状态已发表
DOI10.1109/JSTQE.2022.3228234
摘要

Reservoir computing is a simplified recurrent neural network, which requires training only at the output layer and hence significantly reduces the training cost. Time-delay reservoir computing (TDRC) introduces a large number of virtual neurons based on a single physical neuron and a feedback loop, which is friendly for hardware implementations. This work proposes a scheme for implementing the deep TDRC architecture based on cascading injection-locked semiconductor lasers. In each layer, the reservoir consists of a quantum dot laser and an optical feedback loop. The output of each reservoir layer is fed into the subsequent one through the optical injection-locking technique. This all-optical approach (for reservoir layers) has the merit of high scalability without any depth limitation. Theoretical analysis shows that the deep TDRC improves the performance on multiple benchmark tasks, including the memory capacity, the prediction of chaos, the nonlinear channel equalization, and the recognition of spoken digits.

关键词Reservoir computing Deep neural network Semiconductor lasers Optical feedback Optical injection Nonlinear dynamics
URL查看原文
收录类别SCIE ; EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20225213306713
EI主题词Neurons
EI分类号461.4 Ergonomics and Human Factors Engineering ; 461.9 Biology ; 713 Electronic Circuits ; 714.2 Semiconductor Devices and Integrated Circuits ; 741.1.1 Nonlinear Optics ; 744.4.1 Semiconductor Lasers ; 761 Nanotechnology ; 921 Mathematics ; 931 Classical Physics ; Quantum Theory ; Relativity ; 933.1 Crystalline Solids
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/282001
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_PI研究组_王成组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_博士生
通讯作者Wang, Cheng
作者单位
1.ShanghaiTech University, School of Information Science and Technology, Shanghai; 201210, China;
2.ShanghaiTech University, School of Information Science and Technology, Shanghai Engineering Research Center of Energy Efficient and Custom Ai Ic, Shanghai; 201210, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lin, Bao-De,Shen, Yi-Wei,Tang, Jia-Yan,et al. Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers[J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,2023,29(6).
APA Lin, Bao-De,Shen, Yi-Wei,Tang, Jia-Yan,Yu, Jingyi,He, Xuming,&Wang, Cheng.(2023).Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers.IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS,29(6).
MLA Lin, Bao-De,et al."Deep Time-Delay Reservoir Computing With Cascading Injection-Locked Lasers".IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 29.6(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Bao-De]的文章
[Shen, Yi-Wei]的文章
[Tang, Jia-Yan]的文章
百度学术
百度学术中相似的文章
[Lin, Bao-De]的文章
[Shen, Yi-Wei]的文章
[Tang, Jia-Yan]的文章
必应学术
必应学术中相似的文章
[Lin, Bao-De]的文章
[Shen, Yi-Wei]的文章
[Tang, Jia-Yan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。