消息
×
loading..
A jointed feature fusion framework for photoacoustic image reconstruction
2023-02-01
发表期刊PHOTOACOUSTICS (IF:7.1[JCR-2023],7.2[5-Year])
ISSN2213-5979
卷号29
发表状态已发表
DOI10.1016/j.pacs.2022.100442
摘要The standard reconstruction of Photoacoustic (PA) computed tomography (PACT) image could cause the artifacts due to interferences or ill-posed setup. Recently, deep learning has been used to reconstruct the PA image with ill-posed conditions. In this paper, we propose a jointed feature fusion framework (JEFF-Net) based on deep learning to reconstruct the PA image using limited-view data. The cross-domain features from limited-view position-wise data and the reconstructed image are fused by a backtracked supervision. A quarter position -wise data (32 channels) is fed into model, which outputs another 3-quarters-view data (96 channels). More-over, two novel losses are designed to restrain the artifacts by sufficiently manipulating superposed data. The experimental results have demonstrated the superior performance and quantitative evaluations show that our proposed method outperformed the ground-truth in some metrics by 135% (SSIM for simulation) and 40% (gCNR for in-vivo) improvement.
关键词Photoacoustic tomography Deep learning Reconstruction Convolutional neural network
URL查看原文
收录类别SCI ; EI ; SCOPUS
语种英语
资助项目National Natural Science Foundation of China[61805139] ; United Imaging Intelligence[2019x0203-501-02] ; Double First-Class Initiative Fund of ShanghaiTech University[2022x0203-904-04] ; Shanghai Clinical Research and Trial Center[2022A0305-418-02]
WOS研究方向Acoustics ; Engineering ; Instruments & Instrumentation ; Radiology, Nuclear Medicine & Medical Imaging
WOS类目Acoustics ; Engineering, Biomedical ; Instruments & Instrumentation ; Radiology, Nuclear Medicine & Medical Imaging
WOS记录号WOS:000912094200001
出版者ELSEVIER GMBH
EI入藏号20230513472930
EI主题词Image reconstruction
EI分类号461.4 Ergonomics and Human Factors Engineering ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 741.1 Light/Optics ; 751.1 Acoustic Waves
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/278842
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_高飞组
信息科学与技术学院_硕士生
通讯作者Gao, Fei
作者单位
1.Shanghai Tech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Sch Informat Sci & Technol, Hybrid Imaging Syst Lab, Shanghai 201210, Peoples R China
2.Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China
3.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Lan, Hengrong,Yang, Changchun,Gao, Fei. A jointed feature fusion framework for photoacoustic image reconstruction[J]. PHOTOACOUSTICS,2023,29.
APA Lan, Hengrong,Yang, Changchun,&Gao, Fei.(2023).A jointed feature fusion framework for photoacoustic image reconstruction.PHOTOACOUSTICS,29.
MLA Lan, Hengrong,et al."A jointed feature fusion framework for photoacoustic image reconstruction".PHOTOACOUSTICS 29(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lan, Hengrong]的文章
[Yang, Changchun]的文章
[Gao, Fei]的文章
百度学术
百度学术中相似的文章
[Lan, Hengrong]的文章
[Yang, Changchun]的文章
[Gao, Fei]的文章
必应学术
必应学术中相似的文章
[Lan, Hengrong]的文章
[Yang, Changchun]的文章
[Gao, Fei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。