| |||||||
ShanghaiTech University Knowledge Management System
A jointed feature fusion framework for photoacoustic image reconstruction | |
2023-02-01 | |
发表期刊 | PHOTOACOUSTICS (IF:7.1[JCR-2023],7.2[5-Year]) |
ISSN | 2213-5979 |
卷号 | 29 |
发表状态 | 已发表 |
DOI | 10.1016/j.pacs.2022.100442 |
摘要 | The standard reconstruction of Photoacoustic (PA) computed tomography (PACT) image could cause the artifacts due to interferences or ill-posed setup. Recently, deep learning has been used to reconstruct the PA image with ill-posed conditions. In this paper, we propose a jointed feature fusion framework (JEFF-Net) based on deep learning to reconstruct the PA image using limited-view data. The cross-domain features from limited-view position-wise data and the reconstructed image are fused by a backtracked supervision. A quarter position -wise data (32 channels) is fed into model, which outputs another 3-quarters-view data (96 channels). More-over, two novel losses are designed to restrain the artifacts by sufficiently manipulating superposed data. The experimental results have demonstrated the superior performance and quantitative evaluations show that our proposed method outperformed the ground-truth in some metrics by 135% (SSIM for simulation) and 40% (gCNR for in-vivo) improvement. |
关键词 | Photoacoustic tomography Deep learning Reconstruction Convolutional neural network |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCOPUS |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[61805139] ; United Imaging Intelligence[2019x0203-501-02] ; Double First-Class Initiative Fund of ShanghaiTech University[2022x0203-904-04] ; Shanghai Clinical Research and Trial Center[2022A0305-418-02] |
WOS研究方向 | Acoustics ; Engineering ; Instruments & Instrumentation ; Radiology, Nuclear Medicine & Medical Imaging |
WOS类目 | Acoustics ; Engineering, Biomedical ; Instruments & Instrumentation ; Radiology, Nuclear Medicine & Medical Imaging |
WOS记录号 | WOS:000912094200001 |
出版者 | ELSEVIER GMBH |
EI入藏号 | 20230513472930 |
EI主题词 | Image reconstruction |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 723.2 Data Processing and Image Processing ; 723.5 Computer Applications ; 741.1 Light/Optics ; 751.1 Acoustic Waves |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/278842 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_高飞组 信息科学与技术学院_硕士生 |
通讯作者 | Gao, Fei |
作者单位 | 1.Shanghai Tech Univ, Shanghai Engn Res Ctr Intelligent Vis & Imaging, Sch Informat Sci & Technol, Hybrid Imaging Syst Lab, Shanghai 201210, Peoples R China 2.Tsinghua Univ, Sch Med, Dept Biomed Engn, Beijing 100084, Peoples R China 3.Shanghai Clin Res & Trial Ctr, Shanghai 201210, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Lan, Hengrong,Yang, Changchun,Gao, Fei. A jointed feature fusion framework for photoacoustic image reconstruction[J]. PHOTOACOUSTICS,2023,29. |
APA | Lan, Hengrong,Yang, Changchun,&Gao, Fei.(2023).A jointed feature fusion framework for photoacoustic image reconstruction.PHOTOACOUSTICS,29. |
MLA | Lan, Hengrong,et al."A jointed feature fusion framework for photoacoustic image reconstruction".PHOTOACOUSTICS 29(2023). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。