| |||||||
ShanghaiTech University Knowledge Management System
Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset | |
2023 | |
发表期刊 | INTERNATIONAL JOURNAL OF COMPUTER VISION (IF:11.6[JCR-2023],14.5[5-Year]) |
ISSN | 0920-5691 |
EISSN | 1573-1405 |
卷号 | 131期号:4页码:1002-1021 |
发表状态 | 已发表 |
DOI | 10.1007/s11263-022-01730-5 |
摘要 | The development of neural relighting techniques has by far outpaced the rate of their corresponding training data (e.g., OLAT) generation. For example, high-quality relighting from a single portrait image still requires supervision from comprehensive datasets covering broad diversities in gender, race, complexion, and facial geometry. We present a hybrid parametric neural relighting (PN-Relighting) framework for single portrait relighting, using a much smaller OLAT dataset or SMOLAT. At the core of PN-Relighting, we employ parametric 3D faces coupled with appearance inference and implicit material modelling to enrich SMOLAT for handling in-the-wild images. Specifically, we tailor an appearance inference module to generate detailed geometry and albedo on top of the parametric face and develop a neural rendering module to first construct an implicit material representation from SMOLAT and then conduct self-supervised training on in-the-wild image datasets. Comprehensive experiments show that PN-Relighting produces comparable high-quality relighting to TotalRelighting (Pandey et al., 2021), but with a smaller dataset. It further improves shape estimation and naturally supports free-viewpoint rendering and partial skin material editing. PN-Relighting also serves as a data augmenter to produce rich OLAT datasets beyond the original capture. |
关键词 | 3D Reconstruction Relighting Neural rendering |
URL | 查看原文 |
收录类别 | SCI ; EI ; SCOPUS |
语种 | 英语 |
资助项目 | Shanghai YangFan Program[21YF1429500] ; Shanghai Local college capacity building program[22010502800] ; NSFC programs["61976138","61977047"] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000910844500002 |
出版者 | SPRINGER |
EI入藏号 | 20230213369321 |
EI主题词 | Image reconstruction |
EI分类号 | 723.2 Data Processing and Image Processing ; 723.5 Computer Applications |
原始文献类型 | Journal article (JA) |
Scopus 记录号 | 2-s2.0-85145838515 |
来源库 | Scopus |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/274937 |
专题 | 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_博士生 |
通讯作者 | Wang, Youjia |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Clemson Univ, Clemson, SC USA 3.Deemos Technol Co Ltd, Shanghai, Peoples R China 4.Shanghai Frontiers Sci Ctr Human Ctr Artificial In, Shanghai, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Wang, Youjia,He, Kai,Zhou, Taotao,et al. Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2023,131(4):1002-1021. |
APA | Wang, Youjia.,He, Kai.,Zhou, Taotao.,Yao, Kaixin.,Li, Nianyi.,...&Yu, Jingyi.(2023).Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset.INTERNATIONAL JOURNAL OF COMPUTER VISION,131(4),1002-1021. |
MLA | Wang, Youjia,et al."Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset".INTERNATIONAL JOURNAL OF COMPUTER VISION 131.4(2023):1002-1021. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。