消息
×
loading..
Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset
2023
发表期刊INTERNATIONAL JOURNAL OF COMPUTER VISION (IF:11.6[JCR-2023],14.5[5-Year])
ISSN0920-5691
EISSN1573-1405
卷号131期号:4页码:1002-1021
发表状态已发表
DOI10.1007/s11263-022-01730-5
摘要The development of neural relighting techniques has by far outpaced the rate of their corresponding training data (e.g., OLAT) generation. For example, high-quality relighting from a single portrait image still requires supervision from comprehensive datasets covering broad diversities in gender, race, complexion, and facial geometry. We present a hybrid parametric neural relighting (PN-Relighting) framework for single portrait relighting, using a much smaller OLAT dataset or SMOLAT. At the core of PN-Relighting, we employ parametric 3D faces coupled with appearance inference and implicit material modelling to enrich SMOLAT for handling in-the-wild images. Specifically, we tailor an appearance inference module to generate detailed geometry and albedo on top of the parametric face and develop a neural rendering module to first construct an implicit material representation from SMOLAT and then conduct self-supervised training on in-the-wild image datasets. Comprehensive experiments show that PN-Relighting produces comparable high-quality relighting to TotalRelighting (Pandey et al., 2021), but with a smaller dataset. It further improves shape estimation and naturally supports free-viewpoint rendering and partial skin material editing. PN-Relighting also serves as a data augmenter to produce rich OLAT datasets beyond the original capture.
关键词3D Reconstruction Relighting Neural rendering
URL查看原文
收录类别SCI ; EI ; SCOPUS
语种英语
资助项目Shanghai YangFan Program[21YF1429500] ; Shanghai Local college capacity building program[22010502800] ; NSFC programs["61976138","61977047"] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-000-06] ; SHMEC[2019-01-07-00-01-E00003]
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000910844500002
出版者SPRINGER
EI入藏号20230213369321
EI主题词Image reconstruction
EI分类号723.2 Data Processing and Image Processing ; 723.5 Computer Applications
原始文献类型Journal article (JA)
Scopus 记录号2-s2.0-85145838515
来源库Scopus
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/274937
专题信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_博士生
通讯作者Wang, Youjia
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Clemson Univ, Clemson, SC USA
3.Deemos Technol Co Ltd, Shanghai, Peoples R China
4.Shanghai Frontiers Sci Ctr Human Ctr Artificial In, Shanghai, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Wang, Youjia,He, Kai,Zhou, Taotao,et al. Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset[J]. INTERNATIONAL JOURNAL OF COMPUTER VISION,2023,131(4):1002-1021.
APA Wang, Youjia.,He, Kai.,Zhou, Taotao.,Yao, Kaixin.,Li, Nianyi.,...&Yu, Jingyi.(2023).Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset.INTERNATIONAL JOURNAL OF COMPUTER VISION,131(4),1002-1021.
MLA Wang, Youjia,et al."Free-view Face Relighting Using a Hybrid Parametric Neural Model on a SMALL-OLAT Dataset".INTERNATIONAL JOURNAL OF COMPUTER VISION 131.4(2023):1002-1021.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Youjia]的文章
[He, Kai]的文章
[Zhou, Taotao]的文章
百度学术
百度学术中相似的文章
[Wang, Youjia]的文章
[He, Kai]的文章
[Zhou, Taotao]的文章
必应学术
必应学术中相似的文章
[Wang, Youjia]的文章
[He, Kai]的文章
[Zhou, Taotao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@s11263-022-01730-5.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。