| |||||||
ShanghaiTech University Knowledge Management System
TensoRF: Tensorial Radiance Fields | |
2022 | |
会议录名称 | COMPUTER VISION - ECCV 2022, PT XXXII
![]() |
ISSN | 0302-9743 |
卷号 | 13692 |
发表状态 | 已发表 |
DOI | 10.1007/978-3-031-19824-3_20 |
摘要 | We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which represents a 3D voxel grid with per-voxel multi-channel features. Our central idea is to factorize the 4D scene tensor into multiple compact low-rank tensor components. We demonstrate that applying traditional CANDECOMP/PARAFAC (CP) decomposition - that factorizes tensors into rank-one components with compact vectors - in our framework leads to improvements over vanilla NeRF. To further boost performance, we introduce a novel vector-matrix (VM) decomposition that relaxes the low-rank constraints for two modes of a tensor and factorizes tensors into compact vector and matrix factors. Beyond superior rendering quality, our models with CP and VM decompositions lead to a significantly lower memory footprint in comparison to previous and concurrent works that directly optimize per-voxel features. Experimentally, we demonstrate that TensoRF with CP decomposition achieves fast reconstruction (< 30 min) with better rendering quality and even a smaller model size (< 4 MB) compared to NeRF. Moreover, TensoRF with VM decomposition further boosts rendering quality and outperforms previous state-of-the-art methods, while reducing the reconstruction time (< 10 min) and retaining a compact model size (< 75 MB). |
会议名称 | 17th European Conference on Computer Vision (ECCV) |
出版地 | GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND |
会议地点 | null,Tel Aviv,ISRAEL |
会议日期 | OCT 23-27, 2022 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000903565400020 |
出版者 | SPRINGER INTERNATIONAL PUBLISHING AG |
EISSN | 1611-3349 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/272829 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 |
通讯作者 | Chen, Anpei |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Adobe Res, San Jose, CA USA 3.Univ Tubingen, Tubingen, Germany 4.MPI IS, Tubingen, Germany 5.Univ Calif San Diego, San Diego, CA USA |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Chen, Anpei,Xu, Zexiang,Geiger, Andreas,et al. TensoRF: Tensorial Radiance Fields[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。