消息
×
loading..
TensoRF: Tensorial Radiance Fields
2022
会议录名称COMPUTER VISION - ECCV 2022, PT XXXII
ISSN0302-9743
卷号13692
发表状态已发表
DOI10.1007/978-3-031-19824-3_20
摘要We present TensoRF, a novel approach to model and reconstruct radiance fields. Unlike NeRF that purely uses MLPs, we model the radiance field of a scene as a 4D tensor, which represents a 3D voxel grid with per-voxel multi-channel features. Our central idea is to factorize the 4D scene tensor into multiple compact low-rank tensor components. We demonstrate that applying traditional CANDECOMP/PARAFAC (CP) decomposition - that factorizes tensors into rank-one components with compact vectors - in our framework leads to improvements over vanilla NeRF. To further boost performance, we introduce a novel vector-matrix (VM) decomposition that relaxes the low-rank constraints for two modes of a tensor and factorizes tensors into compact vector and matrix factors. Beyond superior rendering quality, our models with CP and VM decompositions lead to a significantly lower memory footprint in comparison to previous and concurrent works that directly optimize per-voxel features. Experimentally, we demonstrate that TensoRF with CP decomposition achieves fast reconstruction (< 30 min) with better rendering quality and even a smaller model size (< 4 MB) compared to NeRF. Moreover, TensoRF with VM decomposition further boosts rendering quality and outperforms previous state-of-the-art methods, while reducing the reconstruction time (< 10 min) and retaining a compact model size (< 75 MB).
会议名称17th European Conference on Computer Vision (ECCV)
出版地GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND
会议地点null,Tel Aviv,ISRAEL
会议日期OCT 23-27, 2022
URL查看原文
收录类别CPCI-S ; EI
语种英语
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000903565400020
出版者SPRINGER INTERNATIONAL PUBLISHING AG
EISSN1611-3349
引用统计
被引频次:520[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/272829
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
通讯作者Chen, Anpei
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Adobe Res, San Jose, CA USA
3.Univ Tubingen, Tubingen, Germany
4.MPI IS, Tubingen, Germany
5.Univ Calif San Diego, San Diego, CA USA
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Chen, Anpei,Xu, Zexiang,Geiger, Andreas,et al. TensoRF: Tensorial Radiance Fields[C]. GEWERBESTRASSE 11, CHAM, CH-6330, SWITZERLAND:SPRINGER INTERNATIONAL PUBLISHING AG,2022.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen, Anpei]的文章
[Xu, Zexiang]的文章
[Geiger, Andreas]的文章
百度学术
百度学术中相似的文章
[Chen, Anpei]的文章
[Xu, Zexiang]的文章
[Geiger, Andreas]的文章
必应学术
必应学术中相似的文章
[Chen, Anpei]的文章
[Xu, Zexiang]的文章
[Geiger, Andreas]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1007@978-3-031-19824-3_20.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。