消息
×
loading..
A Deeply Supervised Attentive High-Resolution Network for Change Detection in Remote Sensing Images
2023
发表期刊REMOTE SENSING (IF:4.2[JCR-2023],4.9[5-Year])
EISSN2072-4292
卷号15期号:1
发表状态已发表
DOI10.3390/rs15010045
摘要Change detection (CD) is a crucial task in remote sensing (RS) to distinguish surface changes from bitemporal images. Recently, deep learning (DL) based methods have achieved remarkable success for CD. However, the existing methods lack robustness to various kinds of changes in RS images, which suffered from problems of feature misalignment and inefficient supervision. In this paper, a deeply supervised attentive high-resolution network (DSAHRNet) is proposed for remote sensing image change detection. First, we design a spatial-channel attention module to decode change information from bitemporal features. The attention module is able to model spatial-wise and channel-wise contexts. Second, to reduce feature misalignment, the extracted features are refined by stacked convolutional blocks in parallel. Finally, a novel deeply supervised module is introduced to generate more discriminative features. Extensive experimental results on three challenging benchmark datasets demonstrate that the proposed DSAHRNet outperforms other state-of-the-art methods, and achieves a great trade-off between performance and complexity.
关键词change detection convolutional neural network feature fusion metric learning attention mechanism
URL查看原文
收录类别SCI ; EI ; SCOPUS
语种英语
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000908503400001
出版者MDPI
EI入藏号20230213363996
EI主题词Change detection
EI分类号461.4 Ergonomics and Human Factors Engineering ; 601.1 Mechanical Devices ; 716.1 Information Theory and Signal Processing ; 971 Social Sciences
原始文献类型Journal article (JA)
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/272827
专题信息科学与技术学院_硕士生
通讯作者Zhu, Yongxin
作者单位
1.Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai 201210, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
推荐引用方式
GB/T 7714
Wu, Jinming,Xie, Chunhui,Zhang, Zuxi,et al. A Deeply Supervised Attentive High-Resolution Network for Change Detection in Remote Sensing Images[J]. REMOTE SENSING,2023,15(1).
APA Wu, Jinming,Xie, Chunhui,Zhang, Zuxi,&Zhu, Yongxin.(2023).A Deeply Supervised Attentive High-Resolution Network for Change Detection in Remote Sensing Images.REMOTE SENSING,15(1).
MLA Wu, Jinming,et al."A Deeply Supervised Attentive High-Resolution Network for Change Detection in Remote Sensing Images".REMOTE SENSING 15.1(2023).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wu, Jinming]的文章
[Xie, Chunhui]的文章
[Zhang, Zuxi]的文章
百度学术
百度学术中相似的文章
[Wu, Jinming]的文章
[Xie, Chunhui]的文章
[Zhang, Zuxi]的文章
必应学术
必应学术中相似的文章
[Wu, Jinming]的文章
[Xie, Chunhui]的文章
[Zhang, Zuxi]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@rs15010045.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。