Edge magnetism of triangular graphene nanoflakes embedded in hexagonal boron nitride
2023-01-25
发表期刊CARBON (IF:10.5[JCR-2023],9.2[5-Year])
ISSN0008-6223
卷号203页码:59-67
发表状态已发表
DOI10.1016/j.carbon.2022.11.034
摘要

Graphene nanoflakes (GNFs), with intriguing zigzag edge magnetism, have great potential for the application in high-speed and low-power nanoelectronics and spintronics. However, scattering from edge defects can substantially degrade this novel edge magnetism. Precisely controlled growth of GNFs with zigzag edges on dielectric substrates to suppress edge defect scattering is still challenging. Herein, we report the successful synthesis of triangular zigzag-edged GNFs via epitaxy on hexagonal boron nitride (h-BN) templates. Further magnetic measurement results indicate the triangular zigzag-edged GNFs embedded in h-BN can induce the magnetization with a magnitude of 1e-4 emu/g at room temperature. Additionally, density functional theory calculations address such magnetic orderings originating from the superexchange interactions among local “unpaired” electrons located in the zigzag C−BN interface. Our in-plane hetero-integration approach to the template-epitaxial growth of GNFs on the pre-etched h-BN provides a promising platform for experimentally achieving GNFs with high electron spin states, which are highly desired for next-generation spintronics and nanoelectronics.

关键词Graphene nanoflake Hexagonal boron nitride Template-epitaxial growth Triangular graphene Zigzag edge states
URL查看原文
收录类别SCOPUS ; EI
语种英语
出版者Elsevier Ltd
EI入藏号20224713155673
EI主题词Boron nitride
EI分类号701.2 Magnetism: Basic Concepts and Phenomena ; 712.1 Semiconducting Materials ; 761 Nanotechnology ; 762 Magnetoelectronics (Spintronics) ; 802.3 Chemical Operations ; 804 Chemical Products Generally ; 804.2 Inorganic Compounds ; 819.3 Fiber Chemistry and Processing ; 922.1 Probability Theory ; 931.3 Atomic and Molecular Physics ; 931.4 Quantum Theory ; Quantum Mechanics ; 933.1.2 Crystal Growth ; 951 Materials Science
原始文献类型Journal article (JA)
Scopus 记录号2-s2.0-85142322703
来源库Scopus
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/256385
专题物质科学与技术学院_博士生
通讯作者Chen, Lingxiu; Sang, Shengbo; Wang, Haomin
作者单位
1.Shanxi Key Laboratory of Micro Nano Sensors & Artificial Intelligence Perception,College of Information and Computer,Taiyuan University of Technology,Taiyuan,030024,China
2.Key Lab of Advanced Transducers and Intelligent Control System of the Ministry of Education,Taiyuan University of Technology,Taiyuan,030024,China
3.School of Materials Science and Physics,China University of Mining and Technology,Xuzhou,221116,China
4.State Key Laboratory of Functional Materials for Informatics,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences,Shanghai,200050,China
5.School of Physical Science and Technology,ShanghaiTech University,Shanghai,201210,China
6.School of Mathematics and Physics,University of Science and Technology Beijing,Beijing,100083,China
7.Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province,Taiyuan University of Technology,Taiyuan,Shanxi,030024,China
8.Tim Taylor Department of Chemical Engineering,Kansas State University,Manhattan,66506,United States
推荐引用方式
GB/T 7714
Ge, Yang,Chen, Lingxiu,Jiang, Chengxin,et al. Edge magnetism of triangular graphene nanoflakes embedded in hexagonal boron nitride[J]. CARBON,2023,203:59-67.
APA Ge, Yang.,Chen, Lingxiu.,Jiang, Chengxin.,Ji, Jianlong.,Tan, Qiuyun.,...&Wang, Haomin.(2023).Edge magnetism of triangular graphene nanoflakes embedded in hexagonal boron nitride.CARBON,203,59-67.
MLA Ge, Yang,et al."Edge magnetism of triangular graphene nanoflakes embedded in hexagonal boron nitride".CARBON 203(2023):59-67.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ge, Yang]的文章
[Chen, Lingxiu]的文章
[Jiang, Chengxin]的文章
百度学术
百度学术中相似的文章
[Ge, Yang]的文章
[Chen, Lingxiu]的文章
[Jiang, Chengxin]的文章
必应学术
必应学术中相似的文章
[Ge, Yang]的文章
[Chen, Lingxiu]的文章
[Jiang, Chengxin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。