ShanghaiTech University Knowledge Management System
Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections | |
2022-11-01 | |
发表期刊 | APPLIED SCIENCES-BASEL (IF:2.5[JCR-2023],2.7[5-Year]) |
EISSN | 2076-3417 |
卷号 | 12期号:22 |
发表状态 | 已发表 |
DOI | 10.3390/app122211519 |
摘要 | Efficient infrared dim object detection has been challenged by low signal-to-noise ratios (SNRs). Traditional methods rely on the gradient difference and fixed-parameter model. These methods fail to adapt to sophisticated and variable situations in the real world. To tackle the issue, a deep learning method based on the spatio-temporal network is proposed in this paper. The model is established by the Convolutional Long Short-Term Memory cell (Conv-LSTM) and the 3D Convolution cell (3D-Conv). It is trained to learn the motion constraint of moving targets (spatio-temporal constraint module, called STM) and to fuse the multiscale local feature between the target and background (deep spatial features module, called DFM). In addition, a variable interval search module (state-aware module, called STAM) is added to the inference. The submodule decides to conduct a global search for images only if the target is lost due to fast motion, uncertain obstruction, and frame loss. Comprehensive experiments indicate that the proposed method achieves better performance over all baseline methods. On the mid-wave infrared datasets collected by the authors, the proposed method achieves a 95.87% detection rate. The SNR of the dataset is around 1-3 dB, and the background of the sequence includes sky, asphalt road, and buildings. |
关键词 | infrared image sequence dim target detection spatio-temporal constraint multiscale feature fusion deep learning |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Defense Key Laboratory of Science and Technology of Chinese Academy of Sciences[CXJJ-21S030] |
WOS研究方向 | Chemistry ; Engineering ; Materials Science ; Physics |
WOS类目 | Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied |
WOS记录号 | WOS:000887134900001 |
出版者 | MDPI |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/256384 |
专题 | 信息科学与技术学院_特聘教授组_张涛组 |
通讯作者 | Cui, Wennan; Zhang, Tao |
作者单位 | 1.Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Intelligent Infrared Percept, Shanghai 200083, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China |
通讯作者单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Li, Jie,Liu, Pengxi,Huang, Xiayang,et al. Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections[J]. APPLIED SCIENCES-BASEL,2022,12(22). |
APA | Li, Jie,Liu, Pengxi,Huang, Xiayang,Cui, Wennan,&Zhang, Tao.(2022).Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections.APPLIED SCIENCES-BASEL,12(22). |
MLA | Li, Jie,et al."Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections".APPLIED SCIENCES-BASEL 12.22(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。