Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections
2022-11-01
发表期刊APPLIED SCIENCES-BASEL (IF:2.5[JCR-2023],2.7[5-Year])
EISSN2076-3417
卷号12期号:22
发表状态已发表
DOI10.3390/app122211519
摘要Efficient infrared dim object detection has been challenged by low signal-to-noise ratios (SNRs). Traditional methods rely on the gradient difference and fixed-parameter model. These methods fail to adapt to sophisticated and variable situations in the real world. To tackle the issue, a deep learning method based on the spatio-temporal network is proposed in this paper. The model is established by the Convolutional Long Short-Term Memory cell (Conv-LSTM) and the 3D Convolution cell (3D-Conv). It is trained to learn the motion constraint of moving targets (spatio-temporal constraint module, called STM) and to fuse the multiscale local feature between the target and background (deep spatial features module, called DFM). In addition, a variable interval search module (state-aware module, called STAM) is added to the inference. The submodule decides to conduct a global search for images only if the target is lost due to fast motion, uncertain obstruction, and frame loss. Comprehensive experiments indicate that the proposed method achieves better performance over all baseline methods. On the mid-wave infrared datasets collected by the authors, the proposed method achieves a 95.87% detection rate. The SNR of the dataset is around 1-3 dB, and the background of the sequence includes sky, asphalt road, and buildings.
关键词infrared image sequence dim target detection spatio-temporal constraint multiscale feature fusion deep learning
URL查看原文
收录类别SCI
语种英语
资助项目National Defense Key Laboratory of Science and Technology of Chinese Academy of Sciences[CXJJ-21S030]
WOS研究方向Chemistry ; Engineering ; Materials Science ; Physics
WOS类目Chemistry, Multidisciplinary ; Engineering, Multidisciplinary ; Materials Science, Multidisciplinary ; Physics, Applied
WOS记录号WOS:000887134900001
出版者MDPI
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/256384
专题信息科学与技术学院_特聘教授组_张涛组
通讯作者Cui, Wennan; Zhang, Tao
作者单位
1.Chinese Acad Sci, Shanghai Inst Tech Phys, Key Lab Intelligent Infrared Percept, Shanghai 200083, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
通讯作者单位信息科学与技术学院
推荐引用方式
GB/T 7714
Li, Jie,Liu, Pengxi,Huang, Xiayang,et al. Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections[J]. APPLIED SCIENCES-BASEL,2022,12(22).
APA Li, Jie,Liu, Pengxi,Huang, Xiayang,Cui, Wennan,&Zhang, Tao.(2022).Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections.APPLIED SCIENCES-BASEL,12(22).
MLA Li, Jie,et al."Learning Motion Constraint-Based Spatio-Temporal Networks for Infrared Dim Target Detections".APPLIED SCIENCES-BASEL 12.22(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Jie]的文章
[Liu, Pengxi]的文章
[Huang, Xiayang]的文章
百度学术
百度学术中相似的文章
[Li, Jie]的文章
[Liu, Pengxi]的文章
[Huang, Xiayang]的文章
必应学术
必应学术中相似的文章
[Li, Jie]的文章
[Liu, Pengxi]的文章
[Huang, Xiayang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@app122211519.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。