消息
×
loading..
HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs
2022
会议录名称PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION
ISSN1063-6919
卷号2022-June
页码7733-7743
发表状态已发表
DOI10.1109/CVPR52688.2022.00759
摘要Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. © 2022 IEEE.
会议名称2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点New Orleans, LA, United states
会议日期June 19, 2022 - June 24, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Shanghai YangFan Program[21YF1429500] ; Shanghai Local college capacity building program[22010502800] ; NSFC programs["61976138","61977047"] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-00006] ; SHMEC[2019-01-07-00-01-E00003]
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000870759100057
出版者IEEE Computer Society
EI入藏号20224913201514
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/256370
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_许岚组
通讯作者Zhao, Fuqiang
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Huazhong Univ Sci & Technol, Wuhan, Peoples R China
3.DGene, Baton Rouge, LA USA
4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Zhao, Fuqiang,Yang, Wei,Zhang, Jiakai,et al. HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:7733-7743.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhao, Fuqiang]的文章
[Yang, Wei]的文章
[Zhang, Jiakai]的文章
百度学术
百度学术中相似的文章
[Zhao, Fuqiang]的文章
[Yang, Wei]的文章
[Zhang, Jiakai]的文章
必应学术
必应学术中相似的文章
[Zhao, Fuqiang]的文章
[Yang, Wei]的文章
[Zhang, Jiakai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52688.2022.00759.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。