| |||||||
ShanghaiTech University Knowledge Management System
HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs | |
2022 | |
会议录名称 | PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION |
ISSN | 1063-6919 |
卷号 | 2022-June |
页码 | 7733-7743 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52688.2022.00759 |
摘要 | Recent neural human representations can produce high-quality multi-view rendering but require using dense multi-view inputs and costly training. They are hence largely limited to static models as training each frame is infeasible. We present HumanNeRF - a neural representation with efficient generalization ability - for high-fidelity free-view synthesis of dynamic humans. Analogous to how IBRNet assists NeRF by avoiding perscene training, HumanNeRF employs an aggregated pixel-alignment feature across multi-view inputs along with a pose embedded non-rigid deformation field for tackling dynamic motions. The raw Human-NeRF can already produce reasonable rendering on sparse video inputs of unseen subjects and camera settings. To further improve the rendering quality, we augment our solution with in-hour scene-specific fine-tuning, and an appearance blending module for combining the benefits of both neural volumetric rendering and neural texture blending. Extensive experiments on various multi-view dynamic hu-man datasets demonstrate effectiveness of our approach in synthesizing photo-realistic free-view humans under challenging motions and with very sparse camera view inputs. © 2022 IEEE. |
会议名称 | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | New Orleans, LA, United states |
会议日期 | June 19, 2022 - June 24, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | Shanghai YangFan Program[21YF1429500] ; Shanghai Local college capacity building program[22010502800] ; NSFC programs["61976138","61977047"] ; National Key Research and Development Program[2018YFB2100500] ; STCSM[2015F0203-00006] ; SHMEC[2019-01-07-00-01-E00003] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000870759100057 |
出版者 | IEEE Computer Society |
EI入藏号 | 20224913201514 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/256370 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_许岚组 |
通讯作者 | Zhao, Fuqiang |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Huazhong Univ Sci & Technol, Wuhan, Peoples R China 3.DGene, Baton Rouge, LA USA 4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Zhao, Fuqiang,Yang, Wei,Zhang, Jiakai,et al. HumanNeRF: Efficiently Generated Human Radiance Field from Sparse Inputs[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:7733-7743. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。