消息
×
loading..
Neuralizing Regular Expressions for Slot Filling
2021
会议录名称EMNLP 2021 - 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING, PROCEEDINGS
页码9481-9498
发表状态已发表
DOI---
摘要Neural models and symbolic rules such as regular expressions have their respective merits and weaknesses. In this paper, we study the integration of the two approaches for the slot filling task by converting regular expressions into neural networks. Specifically, we first convert regular expressions into a special form of finite-state transducers, then unfold its approximate inference algorithm as a bidirectional recurrent neural model that performs slot filling via sequence labeling. Experimental results show that our model has superior zero-shot and few-shot performance and stays competitive when there are sufficient training data. © 2021 Association for Computational Linguistics
会议录编者/会议主办者Amazon Science ; Apple ; Bloomberg Engineering ; et al. ; Facebook AI ; Google Research
关键词Recurrent neural networks Inference engines Pattern matching Computational linguistics Approximate inference Finite state transducers Inference algorithm Neural modelling Neural-networks Performance Regular expressions Sequence Labeling Training data
会议名称2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021
会议地点Virtual, Punta Cana, Dominican republic
会议日期November 7, 2021 - November 11, 2021
URL查看原文
收录类别EI
语种英语
出版者Association for Computational Linguistics (ACL)
EI入藏号20221411909992
EI主题词Filling
EI分类号691.2 Materials Handling Methods ; 721.1 Computer Theory, Includes Formal Logic, Automata Theory, Switching Theory, Programming Theory ; 723.4.1 Expert Systems
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251929
专题信息科学与技术学院
信息科学与技术学院_PI研究组_屠可伟组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai Engineering Research Center of Intelligent Vision and Imaging, China;
2.New York University, United States
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Jiang, Chengyue,Jin, Zijian,Tu, Kewei. Neuralizing Regular Expressions for Slot Filling[C]//Amazon Science, Apple, Bloomberg Engineering, et al., Facebook AI, Google Research:Association for Computational Linguistics (ACL),2021:9481-9498.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiang, Chengyue]的文章
[Jin, Zijian]的文章
[Tu, Kewei]的文章
百度学术
百度学术中相似的文章
[Jiang, Chengyue]的文章
[Jin, Zijian]的文章
[Tu, Kewei]的文章
必应学术
必应学术中相似的文章
[Jiang, Chengyue]的文章
[Jin, Zijian]的文章
[Tu, Kewei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。