ShanghaiTech University Knowledge Management System
Unlabeled Principal Component Analysis | |
2021 | |
会议录名称 | ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS |
ISSN | 1049-5258 |
卷号 | 36 |
页码 | 30452-30464 |
发表状态 | 正式接收 |
DOI | none |
摘要 | We introduce robust principal component analysis from a data matrix in which the entries of its columns have been corrupted by permutations, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that UPCA is a well-defined algebraic problem in the sense that the only matrices of minimal rank that agree with the given data are row-permutations of the ground-truth matrix, arising as the unique solutions of a polynomial system of equations. Further, we propose an efficient two-stage algorithmic pipeline for UPCA suitable for the practically relevant case where only a fraction of the data have been permuted. Stage-I employs outlier-robust PCA methods to estimate the ground-truth column-space. Equipped with the column-space, Stage-II applies recent methods for unlabeled sensing to restore the permuted data. Experiments on synthetic data, face images, educational and medical records reveal the potential of UPCA for applications such as data privatization and record linkage. © 2021 Neural information processing systems foundation. All rights reserved. |
关键词 | Matrix algebra Medical imaging Polynomials Privatization Algebraic geometry Algorithmics Column space Data matrix Ground truth matrix Polynomial systems Principal-component analysis Robust principal component analysis Systems of equations |
会议名称 | 35th Conference on Neural Information Processing Systems, NeurIPS 2021 |
会议地点 | Virtual, Online |
会议日期 | December 6, 2021 - December 14, 2021 |
URL | 查看原文 |
收录类别 | EI |
语种 | 英语 |
出版者 | Neural information processing systems foundation |
EI入藏号 | 20222512238286 |
EI主题词 | Principal component analysis |
EI分类号 | 461.1 Biomedical Engineering ; 746 Imaging Techniques ; 911.2 Industrial Economics ; 921.1 Algebra ; 922.2 Mathematical Statistics |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251917 |
专题 | 信息科学与技术学院_PI研究组_Manolis Tsakiris组 信息科学与技术学院_硕士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Yao, Yunzhen,Peng, Liangzu,Tsakiris, Manolis C.. Unlabeled Principal Component Analysis[C]:Neural information processing systems foundation,2021:30452-30464. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。