Unlabeled Principal Component Analysis
2021
会议录名称ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS
ISSN1049-5258
卷号36
页码30452-30464
发表状态正式接收
DOInone
摘要We introduce robust principal component analysis from a data matrix in which the entries of its columns have been corrupted by permutations, termed Unlabeled Principal Component Analysis (UPCA). Using algebraic geometry, we establish that UPCA is a well-defined algebraic problem in the sense that the only matrices of minimal rank that agree with the given data are row-permutations of the ground-truth matrix, arising as the unique solutions of a polynomial system of equations. Further, we propose an efficient two-stage algorithmic pipeline for UPCA suitable for the practically relevant case where only a fraction of the data have been permuted. Stage-I employs outlier-robust PCA methods to estimate the ground-truth column-space. Equipped with the column-space, Stage-II applies recent methods for unlabeled sensing to restore the permuted data. Experiments on synthetic data, face images, educational and medical records reveal the potential of UPCA for applications such as data privatization and record linkage. © 2021 Neural information processing systems foundation. All rights reserved.
关键词Matrix algebra Medical imaging Polynomials Privatization Algebraic geometry Algorithmics Column space Data matrix Ground truth matrix Polynomial systems Principal-component analysis Robust principal component analysis Systems of equations
会议名称35th Conference on Neural Information Processing Systems, NeurIPS 2021
会议地点Virtual, Online
会议日期December 6, 2021 - December 14, 2021
URL查看原文
收录类别EI
语种英语
出版者Neural information processing systems foundation
EI入藏号20222512238286
EI主题词Principal component analysis
EI分类号461.1 Biomedical Engineering ; 746 Imaging Techniques ; 911.2 Industrial Economics ; 921.1 Algebra ; 922.2 Mathematical Statistics
原始文献类型Conference article (CA)
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251917
专题信息科学与技术学院_PI研究组_Manolis Tsakiris组
信息科学与技术学院_硕士生
作者单位
School of Information Science and Technology, ShanghaiTech University, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Yao, Yunzhen,Peng, Liangzu,Tsakiris, Manolis C.. Unlabeled Principal Component Analysis[C]:Neural information processing systems foundation,2021:30452-30464.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yao, Yunzhen]的文章
[Peng, Liangzu]的文章
[Tsakiris, Manolis C.]的文章
百度学术
百度学术中相似的文章
[Yao, Yunzhen]的文章
[Peng, Liangzu]的文章
[Tsakiris, Manolis C.]的文章
必应学术
必应学术中相似的文章
[Yao, Yunzhen]的文章
[Peng, Liangzu]的文章
[Tsakiris, Manolis C.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。