ShanghaiTech University Knowledge Management System
SIRI: Spatial relation induced network for spatial description resolution | |
2020 | |
会议录名称 | ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS |
ISSN | 1049-5258 |
卷号 | 2020-December |
发表状态 | 已发表 |
DOI | 未知 |
摘要 | Spatial Description Resolution, as a language-guided localization task, is proposed for target location in a panoramic street view, given corresponding language descriptions. Explicitly characterizing an object-level relationship while distilling spatial relationships are currently absent but crucial to this task. Mimicking humans, who sequentially traverse spatial relationship words and objects with a first-person view to locate their target, we propose a novel spatial relationship induced (SIRI) network. Specifically, visual features are firstly correlated at an implicit object-level in a projected latent space; then they are distilled by each spatial relationship word, resulting in each differently activated feature representing each spatial relationship. Further, we introduce global position priors to fix the absence of positional information, which may result in global positional reasoning ambiguities. Both the linguistic and visual features are concatenated to finalize the target localization. Experimental results on the Touchdown show that our method is around 24% better than the state-of-the-art method in terms of accuracy, measured by an 80-pixel radius. Our method also generalizes well on our proposed extended dataset collected using the same settings as Touchdown. The code for this project is publicly available at https://github.com/wong-puiyiu/siri-sdr. © 2020 Neural information processing systems foundation. All rights reserved. |
会议录编者/会议主办者 | Apple ; et al. ; Microsoft ; PDT Partners ; Sony ; Tenstorrent |
关键词 | Language description Positional information Spatial descriptions Spatial relations Spatial relationships State-of-the-art methods Target localization Target location |
会议名称 | 34th Conference on Neural Information Processing Systems, NeurIPS 2020 |
出版地 | 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA |
会议地点 | Virtual, Online |
会议日期 | December 6, 2020 - December 12, 2020 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | National Key RD Program of China[2018AAA0100704] ; NSFC["61932020","61773272"] ; Science and Technology Commission of Shanghai Municipality[20ZR1436000] |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems |
WOS记录号 | WOS:001207690605048 |
出版者 | Neural information processing systems foundation |
EI入藏号 | 20212610553993 |
EI分类号 | 722.1 Data Storage, Equipment and Techniques |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251874 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_高盛华组 |
作者单位 | 1.ShanghaiTech University, China; 2.Dalian University of Technology, China; 3.Shanghai University, China; 4.Soochow Univerisity, China |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wang, Peiyao,Luo, Weixin,Xu, Yanyu,et al. SIRI: Spatial relation induced network for spatial description resolution[C]//Apple, et al., Microsoft, PDT Partners, Sony, Tenstorrent. 10010 NORTH TORREY PINES RD, LA JOLLA, CALIFORNIA 92037 USA:Neural information processing systems foundation,2020. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。