ShanghaiTech University Knowledge Management System
Multiview vehicle tracking by graph matching model | |
2019-06-01 | |
会议录名称 | IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS |
ISSN | 2160-7508 |
卷号 | 2019-June |
页码 | 29-36 |
发表状态 | 已发表 |
摘要 | Using multiple visual cameras to sensing traffic, especially tracking of vehicles, is a challenging task because of the large number of vehicle models, non-overlapping views, occlusion, view change and time-consuming algorithms. All of them remain obstacles in real world deployment. In this work, we propose a novel and flexible vehicle tracking framework, which formulates matching problem as a graph matching problem and solve it from the bottom up. In our framework, many restrictions can be added into the graph uniformly and simply. Moreover, we introduced an iterative Graph Matching Solver algorithm which can divide and reduce the graph matching problem’s scale efficiently. Additionally, We also take the advantage of geographic information and make a combination with deep ReID features, motion and temporal information. The result shows that our algorithm achieves a 9th place at the AI City Challenge 2019. © 2019 IEEE Computer Society. All rights reserved. |
关键词 | Vehicles Geographic information Graph matching problems Graph matchings Matching problems Multi-views Number of vehicles Real world deployment Temporal information |
会议名称 | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2019 |
会议地点 | Long Beach, CA, United states |
会议日期 | June 16, 2019 - June 20, 2019 |
收录类别 | EI |
语种 | 英语 |
出版者 | IEEE Computer Society |
EI入藏号 | 20213510840913 |
EI主题词 | Iterative methods |
EISSN | 2160-7516 |
EI分类号 | 921.6 Numerical Methods |
原始文献类型 | Conference article (CA) |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251862 |
专题 | 信息科学与技术学院_博士生 物质科学与技术学院_本科生 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 |
作者单位 | 1.ShanghaiTech University, China; 2.Yoke Intelligence |
第一作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wu, Minye,Zhang, Guli,Bi, Ning,et al. Multiview vehicle tracking by graph matching model[C]:IEEE Computer Society,2019:29-36. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wu, Minye]的文章 |
[Zhang, Guli]的文章 |
[Bi, Ning]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wu, Minye]的文章 |
[Zhang, Guli]的文章 |
[Bi, Ning]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wu, Minye]的文章 |
[Zhang, Guli]的文章 |
[Bi, Ning]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。