Light Field Super-resolution via Attention-Guided Fusion of Hybrid Lenses
2020-10-12
会议录名称MM 2020 - PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA
页码193-201
DOI10.1145/3394171.3413585
摘要This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses, including a high-resolution camera surrounded by multiple low-resolution cameras. To tackle this challenge, we propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input from two complementary and parallel perspectives. Specifically, one module regresses a spatially consistent intermediate estimation by learning a deep multidimensional and cross-domain feature representation; the other one constructs another intermediate estimation, which maintains the high-frequency textures, by propagating the information of the high-resolution view. We finally leverage the advantages of the two intermediate estimations via the learned attention maps, leading to the final high-resolution LF image. Extensive experiments demonstrate the significant superiority of our approach over state-of-the-art ones. That is, our method not only improves the PSNR by more than 2 dB, but also preserves the LF structure much better. To the best of our knowledge, this is the first end-to-end deep learning method for reconstructing a high-resolution LF image with a hybrid input. We believe our framework could potentially decrease the cost of high-resolution LF data acquisition and also be beneficial to LF data storage and transmission. The code is available at https://github.com/jingjin25/LFhybridSR-Fusion. © 2020 ACM.
会议录编者/会议主办者ACM SIGMM
关键词Frequency estimation Learning systems Image reconstruction Cameras Data acquisition Deep learning Optical resolving power Digital storage High frequency HF High resolution High resolution camera Learning methods Learning-based approach Low resolution State of the art Super resolution
会议名称28th ACM International Conference on Multimedia, MM 2020
会议地点Virtual, Online, United states
会议日期October 12, 2020 - October 16, 2020
URL查看原文
收录类别EI
语种英语
出版者Association for Computing Machinery, Inc
EI入藏号20212210441315
EI主题词Textures
EI分类号461.4 Ergonomics and Human Factors Engineering ; 722.1 Data Storage, Equipment and Techniques ; 723.2 Data Processing and Image Processing ; 741.1 Light/Optics ; 742.2 Photographic Equipment
原始文献类型Conference article (CA)
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251849
专题信息科学与技术学院_PI研究组_虞晶怡组
通讯作者Hou, Junhui
作者单位
1.City University of Hong Kong, Hong Kong, Hong Kong;
2.Hong Kong Baptist University, Hong Kong, Hong Kong;
3.Shanghai Tech University, Shanghai, China
推荐引用方式
GB/T 7714
Jin, Jing,Hou, Junhui,Chen, Jie,et al. Light Field Super-resolution via Attention-Guided Fusion of Hybrid Lenses[C]//ACM SIGMM:Association for Computing Machinery, Inc,2020:193-201.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jin, Jing]的文章
[Hou, Junhui]的文章
[Chen, Jie]的文章
百度学术
百度学术中相似的文章
[Jin, Jing]的文章
[Hou, Junhui]的文章
[Chen, Jie]的文章
必应学术
必应学术中相似的文章
[Jin, Jing]的文章
[Hou, Junhui]的文章
[Chen, Jie]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1145@3394171.3413585.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。