ShanghaiTech University Knowledge Management System
Physics-Informed Data-Driven Transmission Line Fault Location Based on Dynamic State Estimation | |
2022-07-14 | |
会议录名称 | 2022 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM)
![]() |
ISSN | 1944-9925 |
发表状态 | 已发表 |
DOI | 10.1109/PESGM48719.2022.9916695 |
摘要 | Accurate fault location methods are of great significance for power restoration after system faults. This paper proposes a physics-informed data-driven transmission line fault location method. Two terminal voltage and current sampled value (SV) measurements are typically required. Traditional data-driven methods typically do not consider physical information embedded within the system. Instead, this paper builds the dynamic line model and utilizes the powerful tool of dynamic state estimation (DSE) to track system transients during faults. The fault-related features are extracted via DSE and are utilized as the inputs of the data-driven network to achieve fault location. Numerical experiments in a 500kV AC transmission line system show that the proposed physics-informed data-driven method has higher fault location accuracy in comparison to the traditional data-driven methods without consideration of physics information. The proposed method only needs the fault data window of 5ms after the occurrence of the fault, which is suitable for lines equipped with fast tripping relays. The proposed method is compatible with IEC61850-9-2 standard as it only requires SV measurements with a relatively low sampling rate of 80 samples/cycle. Moreover, although the dynamic line model is utilized for consideration of physics information, the proposed method shows strong robustness against parameter errors. |
关键词 | Data-driven dynamic state estimation fault location physics-informed |
会议地点 | Denver, CO, USA |
会议日期 | 17-21 July 2022 |
URL | 查看原文 |
收录类别 | EI |
来源库 | IEEE |
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/251427 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_PI研究组_刘宇组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 |
通讯作者 | Liu, Yu |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xing, Yiqi,Liu, Yu,Wang, Binglin,et al. Physics-Informed Data-Driven Transmission Line Fault Location Based on Dynamic State Estimation[C],2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。