ShanghaiTech University Knowledge Management System
Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-time | |
2022 | |
会议录名称 | PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION |
ISSN | 1063-6919 |
卷号 | 2022-June |
页码 | 13514-13524 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52688.2022.01316 |
摘要 | Implicit neural representations such as Neural Radiance Field (NeRF) have focused mainly on modeling static objects captured under multi-view settings where real-time rendering can be achieved with smart data structures, e.g., PlenOctree. In this paper, we present a novel Fourier PlenOctree (FPO) technique to tackle efficient neural mod-eling and real-time rendering of dynamic scenes captured under the free-view video (FVV) setting. The key idea in our FPO is a novel combination of generalized NeRF, PlenOctree representation, volumetric fusion and Fourier transform. To accelerate FPO construction, we present a novel coarse-to-fine fusion scheme that leverages the gen-eralizable NeRF technique to generate the tree via spatial blending. To tackle dynamic scenes, we tailor the implicit network to model the Fourier coefficients of time-varying density and color attributes. Finally, we construct the FPO and train the Fourier coefficients directly on the leaves of a union PlenOctree structure of the dynamic sequence. We show that the resulting FPO enables compact memory overload to handle dynamic objects and supports efficient fine-tuning. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF and achieves over an order of magnitude acceleration over SOTA while preserving high visual quality for the free-viewpoint rendering of unseen dynamic scenes. © 2022 IEEE. |
会议名称 | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | New Orleans, LA, United states |
会议日期 | June 19, 2022 - June 24, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | Shanghai YangFan Program[21YF1429500] ; Shanghai Local college capacity building program[22010502800] ; NSFC programs[ |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000870759106060 |
出版者 | IEEE Computer Society |
EI入藏号 | 20224613119449 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/248935 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_许岚组 |
共同第一作者 | Zhang, Jiakai |
通讯作者 | Yu, Jingyi; Xu, Lan |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Katholieke Univ Leuven, Leuven, Belgium 3.DGene, Baton Rouge, LA USA 4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Wang, Liao,Zhang, Jiakai,Liu, Xinhang,et al. Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-time[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:13514-13524. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。