Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-time
2022
会议录名称PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION
ISSN1063-6919
卷号2022-June
页码13514-13524
发表状态已发表
DOI10.1109/CVPR52688.2022.01316
摘要

Implicit neural representations such as Neural Radiance Field (NeRF) have focused mainly on modeling static objects captured under multi-view settings where real-time rendering can be achieved with smart data structures, e.g., PlenOctree. In this paper, we present a novel Fourier PlenOctree (FPO) technique to tackle efficient neural mod-eling and real-time rendering of dynamic scenes captured under the free-view video (FVV) setting. The key idea in our FPO is a novel combination of generalized NeRF, PlenOctree representation, volumetric fusion and Fourier transform. To accelerate FPO construction, we present a novel coarse-to-fine fusion scheme that leverages the gen-eralizable NeRF technique to generate the tree via spatial blending. To tackle dynamic scenes, we tailor the implicit network to model the Fourier coefficients of time-varying density and color attributes. Finally, we construct the FPO and train the Fourier coefficients directly on the leaves of a union PlenOctree structure of the dynamic sequence. We show that the resulting FPO enables compact memory overload to handle dynamic objects and supports efficient fine-tuning. Extensive experiments show that the proposed method is 3000 times faster than the original NeRF and achieves over an order of magnitude acceleration over SOTA while preserving high visual quality for the free-viewpoint rendering of unseen dynamic scenes. © 2022 IEEE.

会议名称2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点New Orleans, LA, United states
会议日期June 19, 2022 - June 24, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Shanghai YangFan Program[21YF1429500] ; Shanghai Local college capacity building program[22010502800] ; NSFC programs[
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000870759106060
出版者IEEE Computer Society
EI入藏号20224613119449
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/248935
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_许岚组
共同第一作者Zhang, Jiakai
通讯作者Yu, Jingyi; Xu, Lan
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Katholieke Univ Leuven, Leuven, Belgium
3.DGene, Baton Rouge, LA USA
4.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Wang, Liao,Zhang, Jiakai,Liu, Xinhang,et al. Fourier PlenOctrees for Dynamic Radiance Field Rendering in Real-time[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:13514-13524.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Liao]的文章
[Zhang, Jiakai]的文章
[Liu, Xinhang]的文章
百度学术
百度学术中相似的文章
[Wang, Liao]的文章
[Zhang, Jiakai]的文章
[Liu, Xinhang]的文章
必应学术
必应学术中相似的文章
[Wang, Liao]的文章
[Zhang, Jiakai]的文章
[Liu, Xinhang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52688.2022.01316.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。