ShanghaiTech University Knowledge Management System
General Incremental Learning with Domain-aware Categorical Representations | |
2022 | |
会议录名称 | PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION |
ISSN | 1063-6919 |
卷号 | 2022-June |
页码 | 14331-14340 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52688.2022.01395 |
摘要 | Continual learning is an important problem for achieving human-level intelligence in real-world applications as an agent must continuously accumulate knowledge in response to streaming data/tasks. In this work, we consider a general and yet under-explored incremental learning problem in which both the class distribution and class-specific domain distribution change over time. In addition to the typical challenges in class incremental learning, this setting also faces the intra-class stability-plasticity dilemma and intra-class domain imbalance problems. To address above issues, we develop a novel domain-aware continual learning method based on the EM framework. Specifically, we introduce a flexible class representation based on the von Mises-Fisher mixture model to capture the intra-class structure, using an expansion-and- reduction strategy to dynamically increase the number of components according to the class complexity. Moreover, we design a bi-level balanced memory to cope with data imbalances within and across classes, which combines with a distillation loss to achieve better inter- and intra-class stability-plasticity trade-off. We conduct exhaustive experiments on three benchmarks: iDigits, iDomainNet and iCIFAR-20. The results show that our approach consistently outperforms previous methods by a significant margin, demonstrating its superiority. © 2022 IEEE. |
会议名称 | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | New Orleans, LA, United states |
会议日期 | June 19, 2022 - June 24, 2022 |
URL | 查看原文 |
收录类别 | EI ; CPCI-S |
语种 | 英语 |
资助项目 | Shanghai Science and Technology Program[21010502700] |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000870759107042 |
出版者 | IEEE Computer Society |
EI入藏号 | 20224613119445 |
原始文献类型 | Conference article (CA) |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/248932 |
专题 | 信息科学与技术学院_硕士生 信息科学与技术学院_PI研究组_何旭明组 信息科学与技术学院_博士生 |
通讯作者 | Xie, Jiangwei |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China 3.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China 4.Univ Chinese Acad Sci, Beijing, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Xie, Jiangwei,Yan, Shipeng,He, Xuming. General Incremental Learning with Domain-aware Categorical Representations[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:14331-14340. |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。