General Incremental Learning with Domain-aware Categorical Representations
2022
会议录名称PROCEEDINGS OF THE IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION
ISSN1063-6919
卷号2022-June
页码14331-14340
发表状态已发表
DOI10.1109/CVPR52688.2022.01395
摘要Continual learning is an important problem for achieving human-level intelligence in real-world applications as an agent must continuously accumulate knowledge in response to streaming data/tasks. In this work, we consider a general and yet under-explored incremental learning problem in which both the class distribution and class-specific domain distribution change over time. In addition to the typical challenges in class incremental learning, this setting also faces the intra-class stability-plasticity dilemma and intra-class domain imbalance problems. To address above issues, we develop a novel domain-aware continual learning method based on the EM framework. Specifically, we introduce a flexible class representation based on the von Mises-Fisher mixture model to capture the intra-class structure, using an expansion-and- reduction strategy to dynamically increase the number of components according to the class complexity. Moreover, we design a bi-level balanced memory to cope with data imbalances within and across classes, which combines with a distillation loss to achieve better inter- and intra-class stability-plasticity trade-off. We conduct exhaustive experiments on three benchmarks: iDigits, iDomainNet and iCIFAR-20. The results show that our approach consistently outperforms previous methods by a significant margin, demonstrating its superiority. © 2022 IEEE.
会议名称2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点New Orleans, LA, United states
会议日期June 19, 2022 - June 24, 2022
URL查看原文
收录类别EI ; CPCI-S
语种英语
资助项目Shanghai Science and Technology Program[21010502700]
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000870759107042
出版者IEEE Computer Society
EI入藏号20224613119445
原始文献类型Conference article (CA)
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/248932
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_何旭明组
信息科学与技术学院_博士生
通讯作者Xie, Jiangwei
作者单位
1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
2.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
3.Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Beijing, Peoples R China
4.Univ Chinese Acad Sci, Beijing, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Xie, Jiangwei,Yan, Shipeng,He, Xuming. General Incremental Learning with Domain-aware Categorical Representations[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE Computer Society,2022:14331-14340.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Xie, Jiangwei]的文章
[Yan, Shipeng]的文章
[He, Xuming]的文章
百度学术
百度学术中相似的文章
[Xie, Jiangwei]的文章
[Yan, Shipeng]的文章
[He, Xuming]的文章
必应学术
必应学术中相似的文章
[Xie, Jiangwei]的文章
[Yan, Shipeng]的文章
[He, Xuming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@CVPR52688.2022.01395.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。