消息
×
loading..
3D Ray Reconstruction Method Based on Enhanced CVAE
2022-10
发表期刊北京邮电大学学报
ISSN1007-5321
卷号45期号:5页码:36-41
发表状态已发表
DOI10.13190/j.jbupt.2021-235
摘要

The incomplete sample space of ray-tracing-data may increase high-prediction-error users in the massive multiple-input multiple-output channel amplitude prediction. To characterize the channel propagation features of all users, a method for 3D ray reconstruction is proposed based on extended probability distribution conditional variational auto-encoder (CVAE). The prior probability distribution is selected based on the sparsity of user ray samples. A new training set of ray samples is generated for high-prediction-error users by enhancing CVAE to make the latent variable distribution of ray-tracing-data fit the features of high-prediction-error users better. The simulation results show that the number of high-prediction-error users can be reduced to 53.59% by new training set based on the proposed method. Moreover, the new set improves the channel amplitude prediction accuracy by 7.8% while significantly reducing the time overhead of predicting the channel amplitude. © 2022, Editorial Department of Journal of Beijing University of Posts and Telecommunications. All right reserved.

关键词3D modeling Codes (symbols) Errors Feedback control Forecasting MIMO systems Ray tracing Signal encoding Telecommunication repeaters 3d channel model Auto encoders Channel modelling Conditional variational auto-encoder Massive multiple-input multiple-output Multiple inputs Multiple outputs Prediction errors Probability: distributions Training sets
收录类别EI ; 北大核心 ; CSCD
语种中文
出版者Beijing University of Posts and Telecommunications
EI入藏号20224613112980
EI主题词Probability distributions
EI分类号716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 731.1 Control Systems ; 741.1 Light/Optics ; 922.1 Probability Theory
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/248916
专题信息科学与技术学院_PI研究组_周勇组
作者单位
1.School of Electronic and Information Engineering, Anhui University, Hefei; 230601, China;
2.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China;
3.LTE Public Performance Development Department, Huawei Shanghai Research Institute, Shanghai; 201206, China
推荐引用方式
GB/T 7714
Zhu, Jun,Yang, Jun,Li, Kai,et al. 3D Ray Reconstruction Method Based on Enhanced CVAE[J]. 北京邮电大学学报,2022,45(5):36-41.
APA Zhu, Jun,Yang, Jun,Li, Kai,&Yu, Wenxin.(2022).3D Ray Reconstruction Method Based on Enhanced CVAE.北京邮电大学学报,45(5),36-41.
MLA Zhu, Jun,et al."3D Ray Reconstruction Method Based on Enhanced CVAE".北京邮电大学学报 45.5(2022):36-41.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Jun]的文章
[Yang, Jun]的文章
[Li, Kai]的文章
百度学术
百度学术中相似的文章
[Zhu, Jun]的文章
[Yang, Jun]的文章
[Li, Kai]的文章
必应学术
必应学术中相似的文章
[Zhu, Jun]的文章
[Yang, Jun]的文章
[Li, Kai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。