| |||||||
ShanghaiTech University Knowledge Management System
3D Ray Reconstruction Method Based on Enhanced CVAE | |
2022-10 | |
发表期刊 | 北京邮电大学学报 |
ISSN | 1007-5321 |
卷号 | 45期号:5页码:36-41 |
发表状态 | 已发表 |
DOI | 10.13190/j.jbupt.2021-235 |
摘要 | The incomplete sample space of ray-tracing-data may increase high-prediction-error users in the massive multiple-input multiple-output channel amplitude prediction. To characterize the channel propagation features of all users, a method for 3D ray reconstruction is proposed based on extended probability distribution conditional variational auto-encoder (CVAE). The prior probability distribution is selected based on the sparsity of user ray samples. A new training set of ray samples is generated for high-prediction-error users by enhancing CVAE to make the latent variable distribution of ray-tracing-data fit the features of high-prediction-error users better. The simulation results show that the number of high-prediction-error users can be reduced to 53.59% by new training set based on the proposed method. Moreover, the new set improves the channel amplitude prediction accuracy by 7.8% while significantly reducing the time overhead of predicting the channel amplitude. © 2022, Editorial Department of Journal of Beijing University of Posts and Telecommunications. All right reserved. |
关键词 | 3D modeling Codes (symbols) Errors Feedback control Forecasting MIMO systems Ray tracing Signal encoding Telecommunication repeaters 3d channel model Auto encoders Channel modelling Conditional variational auto-encoder Massive multiple-input multiple-output Multiple inputs Multiple outputs Prediction errors Probability: distributions Training sets |
收录类别 | EI ; 北大核心 ; CSCD |
语种 | 中文 |
出版者 | Beijing University of Posts and Telecommunications |
EI入藏号 | 20224613112980 |
EI主题词 | Probability distributions |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 731.1 Control Systems ; 741.1 Light/Optics ; 922.1 Probability Theory |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/248916 |
专题 | 信息科学与技术学院_PI研究组_周勇组 |
作者单位 | 1.School of Electronic and Information Engineering, Anhui University, Hefei; 230601, China; 2.School of Information Science and Technology, ShanghaiTech University, Shanghai; 201210, China; 3.LTE Public Performance Development Department, Huawei Shanghai Research Institute, Shanghai; 201206, China |
推荐引用方式 GB/T 7714 | Zhu, Jun,Yang, Jun,Li, Kai,et al. 3D Ray Reconstruction Method Based on Enhanced CVAE[J]. 北京邮电大学学报,2022,45(5):36-41. |
APA | Zhu, Jun,Yang, Jun,Li, Kai,&Yu, Wenxin.(2022).3D Ray Reconstruction Method Based on Enhanced CVAE.北京邮电大学学报,45(5),36-41. |
MLA | Zhu, Jun,et al."3D Ray Reconstruction Method Based on Enhanced CVAE".北京邮电大学学报 45.5(2022):36-41. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhu, Jun]的文章 |
[Yang, Jun]的文章 |
[Li, Kai]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhu, Jun]的文章 |
[Yang, Jun]的文章 |
[Li, Kai]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhu, Jun]的文章 |
[Yang, Jun]的文章 |
[Li, Kai]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。