STCrowd: A Multimodal Dataset for Pedestrian Perception in Crowded Scenes
2022
会议录名称CVPR 2022
ISSN1063-6919
发表状态已发表
DOI10.1109/CVPR52688.2022.01899
摘要Accurately detecting and tracking pedestrians in 3D space is challenging due to large variations in rotations, poses and scales. The situation becomes even worse for dense crowds with severe occlusions. However, existing benchmarks either only provide 2D annotations, or have limited 3D annotations with low-density pedestrian distribution, making it difficult to build a reliable pedestrian perception system especially in crowded scenes. To better evaluate pedestrian perception algorithms in crowded scenarios, we introduce a large-scale multimodal dataset, STCrowd. Specifically, in STCrowd, there are a total of 219 K pedestrian instances and 20 persons per frame on average, with various levels of occlusion. We provide synchronized LiDAR point clouds and camera images as well as their corresponding 3D labels and joint IDs. STCrowd can be used for various tasks, including LiDAR-only, image-only, and sensor-fusion based pedestrian detection and tracking. We provide baselines for most of the tasks. In addition, considering the property of sparse global distribution and density-varying local distribution of pedestrians, we further propose a novel method, Density-aware Hierarchical heatmap Aggregation (DHA), to enhance pedestrian perception in crowded scenes. Extensive experiments show that our new method achieves state-of-the-art performance for pedestrian detection on various datasets. https://github.com/4DVLab/STCrowd.git.
会议名称IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
出版地10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA
会议地点null,New Orleans,LA
会议日期JUN 18-24, 2022
URL查看原文
收录类别CPCI-S
语种英语
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology
WOS记录号WOS:000870783005040
出版者IEEE COMPUTER SOC
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243366
专题信息科学与技术学院_PI研究组_许岚组
信息科学与技术学院_硕士生
信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_马月昕
通讯作者Ma, Yuexin
作者单位
1.ShanghaiTech Univ, Shanghai, Peoples R China
2.Chinese Univ Hong Kong, Hong Kong, Peoples R China
3.Rhein Westfal TH Aachen, Aachen, Germany
4.Shanghai AI Lab, Shanghai, Peoples R China
5.Univ Kentucky, Lexington, KY 40506 USA
6.Univ Maryland, College Pk, MD 20742 USA
7.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China
第一作者单位上海科技大学
通讯作者单位上海科技大学
第一作者的第一单位上海科技大学
推荐引用方式
GB/T 7714
Cong, Peishan,Zhu, Xinge,Qiao, Feng,et al. STCrowd: A Multimodal Dataset for Pedestrian Perception in Crowded Scenes[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Cong, Peishan]的文章
[Zhu, Xinge]的文章
[Qiao, Feng]的文章
百度学术
百度学术中相似的文章
[Cong, Peishan]的文章
[Zhu, Xinge]的文章
[Qiao, Feng]的文章
必应学术
必应学术中相似的文章
[Cong, Peishan]的文章
[Zhu, Xinge]的文章
[Qiao, Feng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。