ShanghaiTech University Knowledge Management System
STCrowd: A Multimodal Dataset for Pedestrian Perception in Crowded Scenes | |
2022 | |
会议录名称 | CVPR 2022 |
ISSN | 1063-6919 |
发表状态 | 已发表 |
DOI | 10.1109/CVPR52688.2022.01899 |
摘要 | Accurately detecting and tracking pedestrians in 3D space is challenging due to large variations in rotations, poses and scales. The situation becomes even worse for dense crowds with severe occlusions. However, existing benchmarks either only provide 2D annotations, or have limited 3D annotations with low-density pedestrian distribution, making it difficult to build a reliable pedestrian perception system especially in crowded scenes. To better evaluate pedestrian perception algorithms in crowded scenarios, we introduce a large-scale multimodal dataset, STCrowd. Specifically, in STCrowd, there are a total of 219 K pedestrian instances and 20 persons per frame on average, with various levels of occlusion. We provide synchronized LiDAR point clouds and camera images as well as their corresponding 3D labels and joint IDs. STCrowd can be used for various tasks, including LiDAR-only, image-only, and sensor-fusion based pedestrian detection and tracking. We provide baselines for most of the tasks. In addition, considering the property of sparse global distribution and density-varying local distribution of pedestrians, we further propose a novel method, Density-aware Hierarchical heatmap Aggregation (DHA), to enhance pedestrian perception in crowded scenes. Extensive experiments show that our new method achieves state-of-the-art performance for pedestrian detection on various datasets. https://github.com/4DVLab/STCrowd.git. |
会议名称 | IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) |
出版地 | 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA |
会议地点 | null,New Orleans,LA |
会议日期 | JUN 18-24, 2022 |
URL | 查看原文 |
收录类别 | CPCI-S |
语种 | 英语 |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000870783005040 |
出版者 | IEEE COMPUTER SOC |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243366 |
专题 | 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_硕士生 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_马月昕 |
通讯作者 | Ma, Yuexin |
作者单位 | 1.ShanghaiTech Univ, Shanghai, Peoples R China 2.Chinese Univ Hong Kong, Hong Kong, Peoples R China 3.Rhein Westfal TH Aachen, Aachen, Germany 4.Shanghai AI Lab, Shanghai, Peoples R China 5.Univ Kentucky, Lexington, KY 40506 USA 6.Univ Maryland, College Pk, MD 20742 USA 7.Shanghai Engn Res Ctr Intelligent Vis & Imaging, Shanghai, Peoples R China |
第一作者单位 | 上海科技大学 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 上海科技大学 |
推荐引用方式 GB/T 7714 | Cong, Peishan,Zhu, Xinge,Qiao, Feng,et al. STCrowd: A Multimodal Dataset for Pedestrian Perception in Crowded Scenes[C]. 10662 LOS VAQUEROS CIRCLE, PO BOX 3014, LOS ALAMITOS, CA 90720-1264 USA:IEEE COMPUTER SOC,2022. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。