消息
×
loading..
Blind Demixing for Low-Latency Communication
2019-02
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1536-1276
EISSN1558-2248
卷号18期号:2页码:897-911
发表状态已发表
DOI10.1109/TWC.2018.2886191
摘要In next-generation wireless networks, low-latency communication is critical to support emerging diversified applications, e.g., tactile Internet and virtual reality. In this paper, a novel blind demixing approach is developed to reduce the channel signaling overhead, thereby supporting low-latency communication. Specifically, we develop a low-rank approach to recover the original information only based on the single observed vector without any channel estimation. To address the unique challenges of multiple non-convex rank-one constraints, the quotient manifold geometry of the product of complex symmetric rank-one matrices is exploited. This is achieved by equivalently reformulating the original problem that uses complex asymmetric matrices to the one that uses Hermitian positive semidefinite matrices. We further generalize the geometric concepts of the complex product manifold via element-wise extension of the geometric concepts of the individual manifolds. The scalable Riemannian optimization algorithms, i.e., the Riemannian gradient descent algorithm and the Riemannian trust-region algorithm, are then developed to solve the blind demixing problem efficiently with low iteration complexity and low iteration cost. The statistical analysis shows that the Riemannian gradient descent with spectral initialization is guaranteed to linearly converge to the ground truth signals provided sufficient measurements. In addition, the Riemannian trust-region algorithm is provable to converge to an approximate local minimum from the arbitrary initialization point. Numerical experiments have been carried out in settings with different types of encoding matrices to demonstrate the algorithmic advantages, performance gains, and sample efficiency of the Riemannian optimization algorithms.
关键词Blind demixing low-latency communication low-rank optimization product manifold Riemannian optimization Blind Demixing, Low-latency Communication, Low-rank Optimization, Product Manifold, Riemannian Optimization.
URL查看原文
收录类别SCIE ; EI ; SCI
语种英语
WOS研究方向Engineering ; Telecommunications
WOS类目Engineering, Electrical & Electronic ; Telecommunications
WOS记录号WOS:000458842600012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243311
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_博士生
通讯作者Shi, Yuanming
作者单位
ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Dong, Jialin,Yang, Kai,Shi, Yuanming. Blind Demixing for Low-Latency Communication[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2019,18(2):897-911.
APA Dong, Jialin,Yang, Kai,&Shi, Yuanming.(2019).Blind Demixing for Low-Latency Communication.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,18(2),897-911.
MLA Dong, Jialin,et al."Blind Demixing for Low-Latency Communication".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 18.2(2019):897-911.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dong, Jialin]的文章
[Yang, Kai]的文章
[Shi, Yuanming]的文章
百度学术
百度学术中相似的文章
[Dong, Jialin]的文章
[Yang, Kai]的文章
[Shi, Yuanming]的文章
必应学术
必应学术中相似的文章
[Dong, Jialin]的文章
[Yang, Kai]的文章
[Shi, Yuanming]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.1109@TWC.2018.2886191.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。