Convolutional Neural Opacity Radiance Fields
2021
会议录名称2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP)
ISSN2164-9774
发表状态已发表
DOI10.1109/ICCP51581.2021.94662763
摘要

Photo-realistic modeling and rendering of fuzzy objects with complex opacity are critical for numerous immersive VR/AR applications, but it suffers from strong view-dependent brightness, color. In this paper, we propose a novel scheme to generate opacity radiance fields with a convolutional neural renderer for fuzzy objects, which is the first to combine both explicit opacity supervision and convolutional mechanism into the neural radiance field framework so as to enable high-quality appearance and global consistent alpha mattes generation in arbitrary novel views. More specifically, we propose an efficient sampling strategy along with both the camera rays and image plane, which enables efficient radiance field sampling and learning in a patch-wise manner, as well as a novel volumetric feature integration scheme that generates per-patch hybrid feature embeddings to reconstruct the view-consistent fine-detailed appearance and opacity output. We further adopt a patch-wise adversarial training scheme to preserve both high-frequency appearance and opacity details in a self-supervised framework. We also introduce an effective multi-view image capture system to capture high-quality color and alpha maps for challenging fuzzy objects. Extensive experiments on existing and our new challenging fuzzy object dataset demonstrate that our method achieves photo-realistic, globally consistent, and fined detailed appearance and opacity free-viewpoint rendering for various fuzzy objects.

会议录编者/会议主办者IEEE,Appl Mat,Adobe,Snap Inc,King Abdullah Univ Sci & Technol,Google,Tangram Vis,Facebook AI,Omron,IEEE Comp Soc,Israel Inst Technol ; Adobe ; Applied Materials ; et al. ; Google ; King Abdullah University of Science and Technology ; Snap Inc.
关键词Computational Photography Neural Rendering Opacity Modelling View Synthesis Color photography Convolution Rendering (computer graphics) Efficient sampling Free viewpoint renderings High frequency HF High quality color Hybrid features Multi view image Training schemes Volumetric features
会议名称13th IEEE International Conference on Computational Photography (ICCP)
出版地NEW YORK
会议地点Haifa, ISRAEL
会议日期MAY 23-25, 2021
URL查看原文
收录类别CPCI-S ; EI
语种英语
WOS研究方向Computer Science ; Imaging Science & Photographic Technology
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Imaging Science & Photographic Technology
WOS记录号WOS:000693440600016
出版者IEEE
EI入藏号20213610870251
EI主题词Opacity
EI分类号716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.1 Light/Optics ; 742.1 Photography
原始文献类型Proceedings Paper
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243076
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_虞晶怡组
信息科学与技术学院_硕士生
信息科学与技术学院_本科生
信息科学与技术学院_PI研究组_许岚组
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.University of Chinese Academy of Sciences, Beijing, China
3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Haimin Luo,Anpei Chen,Qixuan Zhang,et al. Convolutional Neural Opacity Radiance Fields[C]//IEEE,Appl Mat,Adobe,Snap Inc,King Abdullah Univ Sci & Technol,Google,Tangram Vis,Facebook AI,Omron,IEEE Comp Soc,Israel Inst Technol, Adobe, Applied Materials, et al., Google, King Abdullah University of Science and Technology, Snap Inc.. NEW YORK:IEEE,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Haimin Luo]的文章
[Anpei Chen]的文章
[Qixuan Zhang]的文章
百度学术
百度学术中相似的文章
[Haimin Luo]的文章
[Anpei Chen]的文章
[Qixuan Zhang]的文章
必应学术
必应学术中相似的文章
[Haimin Luo]的文章
[Anpei Chen]的文章
[Qixuan Zhang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。