ShanghaiTech University Knowledge Management System
Convolutional Neural Opacity Radiance Fields | |
2021 | |
会议录名称 | 2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY (ICCP)
![]() |
ISSN | 2164-9774 |
发表状态 | 已发表 |
DOI | 10.1109/ICCP51581.2021.94662763 |
摘要 | Photo-realistic modeling and rendering of fuzzy objects with complex opacity are critical for numerous immersive VR/AR applications, but it suffers from strong view-dependent brightness, color. In this paper, we propose a novel scheme to generate opacity radiance fields with a convolutional neural renderer for fuzzy objects, which is the first to combine both explicit opacity supervision and convolutional mechanism into the neural radiance field framework so as to enable high-quality appearance and global consistent alpha mattes generation in arbitrary novel views. More specifically, we propose an efficient sampling strategy along with both the camera rays and image plane, which enables efficient radiance field sampling and learning in a patch-wise manner, as well as a novel volumetric feature integration scheme that generates per-patch hybrid feature embeddings to reconstruct the view-consistent fine-detailed appearance and opacity output. We further adopt a patch-wise adversarial training scheme to preserve both high-frequency appearance and opacity details in a self-supervised framework. We also introduce an effective multi-view image capture system to capture high-quality color and alpha maps for challenging fuzzy objects. Extensive experiments on existing and our new challenging fuzzy object dataset demonstrate that our method achieves photo-realistic, globally consistent, and fined detailed appearance and opacity free-viewpoint rendering for various fuzzy objects. |
会议录编者/会议主办者 | IEEE,Appl Mat,Adobe,Snap Inc,King Abdullah Univ Sci & Technol,Google,Tangram Vis,Facebook AI,Omron,IEEE Comp Soc,Israel Inst Technol ; Adobe ; Applied Materials ; et al. ; Google ; King Abdullah University of Science and Technology ; Snap Inc. |
关键词 | Computational Photography Neural Rendering Opacity Modelling View Synthesis Color photography Convolution Rendering (computer graphics) Efficient sampling Free viewpoint renderings High frequency HF High quality color Hybrid features Multi view image Training schemes Volumetric features |
会议名称 | 13th IEEE International Conference on Computational Photography (ICCP) |
出版地 | NEW YORK |
会议地点 | Haifa, ISRAEL |
会议日期 | MAY 23-25, 2021 |
URL | 查看原文 |
收录类别 | CPCI-S ; EI |
语种 | 英语 |
WOS研究方向 | Computer Science ; Imaging Science & Photographic Technology |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Software Engineering ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000693440600016 |
出版者 | IEEE |
EI入藏号 | 20213610870251 |
EI主题词 | Opacity |
EI分类号 | 716.1 Information Theory and Signal Processing ; 723.2 Data Processing and Image Processing ; 741.1 Light/Optics ; 742.1 Photography |
原始文献类型 | Proceedings Paper |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 会议论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/243076 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_许岚组 |
作者单位 | 1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China 2.University of Chinese Academy of Sciences, Beijing, China 3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Haimin Luo,Anpei Chen,Qixuan Zhang,et al. Convolutional Neural Opacity Radiance Fields[C]//IEEE,Appl Mat,Adobe,Snap Inc,King Abdullah Univ Sci & Technol,Google,Tangram Vis,Facebook AI,Omron,IEEE Comp Soc,Israel Inst Technol, Adobe, Applied Materials, et al., Google, King Abdullah University of Science and Technology, Snap Inc.. NEW YORK:IEEE,2021. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。