消息
×
loading..
Online Client Selection for Asynchronous Federated Learning With Fairness Consideration
2023-04
发表期刊IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS (IF:8.9[JCR-2023],8.6[5-Year])
ISSN1558-2248
EISSN1558-2248
卷号22期号:4页码:2493-2506
发表状态已发表
DOI10.1109/TWC.2022.3211998
摘要

Federated learning (FL) leverages the private data and computing power of multiple clients to collaboratively train a global model. Many existing FL algorithms over wireless networks adopting synchronous model aggregation suffer from the straggler issue, due to the heterogeneity of local computing power and channel conditions. To address this issue, we in this paper advocate an asynchronous FL framework with adaptive client selection for training latency minimization, taking into account the client availability and long-term fairness. We consider a practical scenario, where the channel conditions and the locally available computing power are not known in prior. This makes the client selection problem challenging, as the training latency consists of the uplink/downlink transmission time and the local training time. To this end, we tackle the asynchronous client selection problem in an online manner by converting the latency minimization problem into a multi-armed bandit problem, and leverage the upper confidence bound policy and virtual queue technique in Lyapunov optimization to solve the problem. We theoretically show that the proposed algorithm achieves sub-linear regret performance, ensures long-term fairness, and guarantees training convergence. Results show that the proposed algorithm can reduce the training time by up to 50% when compared to the baseline algorithms. © 2002-2012 IEEE.

关键词Asynchronous federated learning multi-armed bandit client selection
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20224212976620
EI主题词Wireless networks
EI分类号716.3 Radio Systems and Equipment ; 722.2 Computer Peripheral Equipment ; 722.3 Data Communication, Equipment and Techniques ; 722.4 Digital Computers and Systems ; 723 Computer Software, Data Handling and Applications
原始文献类型Journal article (JA)
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/241106
专题信息科学与技术学院_博士生
信息科学与技术学院_PI研究组_石远明组
信息科学与技术学院_PI研究组_周勇组
通讯作者Zhou, Yong
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China;
2.Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China;
3.School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China;
4.Terminus Group, Beijing, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Zhu, Hongbin,Zhou, Yong,Qian, Hua,et al. Online Client Selection for Asynchronous Federated Learning With Fairness Consideration[J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,2023,22(4):2493-2506.
APA Zhu, Hongbin,Zhou, Yong,Qian, Hua,Shi, Yuanming,Chen, Xu,&Yang, Yang.(2023).Online Client Selection for Asynchronous Federated Learning With Fairness Consideration.IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS,22(4),2493-2506.
MLA Zhu, Hongbin,et al."Online Client Selection for Asynchronous Federated Learning With Fairness Consideration".IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 22.4(2023):2493-2506.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Hongbin]的文章
[Zhou, Yong]的文章
[Qian, Hua]的文章
百度学术
百度学术中相似的文章
[Zhu, Hongbin]的文章
[Zhou, Yong]的文章
[Qian, Hua]的文章
必应学术
必应学术中相似的文章
[Zhu, Hongbin]的文章
[Zhou, Yong]的文章
[Qian, Hua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。