消息
×
loading..
An ultra-efficient streaming-based FPGA accelerator for infrared target detection
2022-10
发表期刊红外与毫米波学报 (IF:0.6[JCR-2023],0.5[5-Year])
ISSN1001-9014
卷号41期号:5页码:914-922
发表状态已发表
DOI10.11972/j.issn.1001-9014.2022.05.016
摘要

Object detection algorithm based on deep learning has achieved great success, significantly better than the effect of traditional algorithms, and even surpassed human in many scenarios. Unlike RGB cameras, infrared cameras can see objects even in the dark, which can be used in many fields like surveillance and autonomous driving. In this paper, a lightweight target detection algorithm for embedded devices is proposed, which is accelerated and deployed using Xilinx Ultrascale+MPSoC FPGA ZU3EG. The accelerator runs at a 350 MHz frequency clock with throughput of 551 FPS and power of only 8. 4 W. The intersection over union (IoU)of the algorithm achieves an accuracy of 73. 6% on FILR datasets. Comparing with the previous work, the accelerator design improves performance by 2. 59× and reduces 49. 02% of the power consumption. © 2022 Chinese Optical Society. All rights reserved.

关键词Cameras Convolution Convolutional neural networks Deep learning Embedded systems Field programmable gate arrays (FPGA) Interactive computer systems Object detection Security systems Signal detection System-on-chip Thermography (imaging) Convolutional neural network Field programmable gate array Field programmables Infra-red cameras Infrared target detection Object detection algorithms Programmable gate array Real Time system RGB cameras Ultra-efficient
URL查看原文
收录类别EI ; 北大核心 ; SCI
语种英语
资助项目National Pre-Research Foundation of China[514010405-207]
WOS研究方向Optics
WOS类目Optics
WOS记录号WOS:000911989500016
出版者Chinese Optical Society
EI入藏号20224212896047
EI主题词Real time systems
EI分类号461.4 Ergonomics and Human Factors Engineering ; 714.2 Semiconductor Devices and Integrated Circuits ; 716.1 Information Theory and Signal Processing ; 721.2 Logic Elements ; 721.3 Computer Circuits ; 722.4 Digital Computers and Systems ; 723.2 Data Processing and Image Processing ; 742.1 Photography ; 742.2 Photographic Equipment ; 914.1 Accidents and Accident Prevention
原始文献类型Journal article (JA)
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/241066
专题信息科学与技术学院_硕士生
通讯作者Li Zheng
作者单位
1.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 20083, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Chinese Acad Sci, Key Lab Infrared Syst Detect & Imaging Technol, Shanghai 200083, Peoples R China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chen Shao-Yi,Tang Xin-yi,Wang Jian,et al. An ultra-efficient streaming-based FPGA accelerator for infrared target detection[J]. 红外与毫米波学报,2022,41(5):914-922.
APA Chen Shao-Yi,Tang Xin-yi,Wang Jian,Huang Jing-Si,&Li Zheng.(2022).An ultra-efficient streaming-based FPGA accelerator for infrared target detection.红外与毫米波学报,41(5),914-922.
MLA Chen Shao-Yi,et al."An ultra-efficient streaming-based FPGA accelerator for infrared target detection".红外与毫米波学报 41.5(2022):914-922.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen Shao-Yi]的文章
[Tang Xin-yi]的文章
[Wang Jian]的文章
百度学术
百度学术中相似的文章
[Chen Shao-Yi]的文章
[Tang Xin-yi]的文章
[Wang Jian]的文章
必应学术
必应学术中相似的文章
[Chen Shao-Yi]的文章
[Tang Xin-yi]的文章
[Wang Jian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。