| |||||||
ShanghaiTech University Knowledge Management System
An ultra-efficient streaming-based FPGA accelerator for infrared target detection | |
2022-10 | |
发表期刊 | 红外与毫米波学报 (IF:0.6[JCR-2023],0.5[5-Year]) |
ISSN | 1001-9014 |
卷号 | 41期号:5页码:914-922 |
发表状态 | 已发表 |
DOI | 10.11972/j.issn.1001-9014.2022.05.016 |
摘要 | Object detection algorithm based on deep learning has achieved great success, significantly better than the effect of traditional algorithms, and even surpassed human in many scenarios. Unlike RGB cameras, infrared cameras can see objects even in the dark, which can be used in many fields like surveillance and autonomous driving. In this paper, a lightweight target detection algorithm for embedded devices is proposed, which is accelerated and deployed using Xilinx Ultrascale+MPSoC FPGA ZU3EG. The accelerator runs at a 350 MHz frequency clock with throughput of 551 FPS and power of only 8. 4 W. The intersection over union (IoU)of the algorithm achieves an accuracy of 73. 6% on FILR datasets. Comparing with the previous work, the accelerator design improves performance by 2. 59× and reduces 49. 02% of the power consumption. © 2022 Chinese Optical Society. All rights reserved. |
关键词 | Cameras Convolution Convolutional neural networks Deep learning Embedded systems Field programmable gate arrays (FPGA) Interactive computer systems Object detection Security systems Signal detection System-on-chip Thermography (imaging) Convolutional neural network Field programmable gate array Field programmables Infra-red cameras Infrared target detection Object detection algorithms Programmable gate array Real Time system RGB cameras Ultra-efficient |
URL | 查看原文 |
收录类别 | EI ; 北大核心 ; SCI |
语种 | 英语 |
资助项目 | National Pre-Research Foundation of China[514010405-207] |
WOS研究方向 | Optics |
WOS类目 | Optics |
WOS记录号 | WOS:000911989500016 |
出版者 | Chinese Optical Society |
EI入藏号 | 20224212896047 |
EI主题词 | Real time systems |
EI分类号 | 461.4 Ergonomics and Human Factors Engineering ; 714.2 Semiconductor Devices and Integrated Circuits ; 716.1 Information Theory and Signal Processing ; 721.2 Logic Elements ; 721.3 Computer Circuits ; 722.4 Digital Computers and Systems ; 723.2 Data Processing and Image Processing ; 742.1 Photography ; 742.2 Photographic Equipment ; 914.1 Accidents and Accident Prevention |
原始文献类型 | Journal article (JA) |
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/241066 |
专题 | 信息科学与技术学院_硕士生 |
通讯作者 | Li Zheng |
作者单位 | 1.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Tech Phys, Shanghai 20083, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Chinese Acad Sci, Key Lab Infrared Syst Detect & Imaging Technol, Shanghai 200083, Peoples R China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen Shao-Yi,Tang Xin-yi,Wang Jian,et al. An ultra-efficient streaming-based FPGA accelerator for infrared target detection[J]. 红外与毫米波学报,2022,41(5):914-922. |
APA | Chen Shao-Yi,Tang Xin-yi,Wang Jian,Huang Jing-Si,&Li Zheng.(2022).An ultra-efficient streaming-based FPGA accelerator for infrared target detection.红外与毫米波学报,41(5),914-922. |
MLA | Chen Shao-Yi,et al."An ultra-efficient streaming-based FPGA accelerator for infrared target detection".红外与毫米波学报 41.5(2022):914-922. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。