Two intrinsic timing mechanisms set start and end times for dendritic arborization of a nociceptive neuron
2022-11-02
发表期刊PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA (IF:9.4[JCR-2023],10.8[5-Year])
ISSN0027-8424
EISSN1091-6490
卷号119期号:45页码:e2210053119
发表状态已发表
DOI10.1073/pnas.2210053119
摘要Choreographic dendritic arborization takes place within a defined time frame, but the timing mechanism is currently not known. Here, we report that the precisely timed lin-4-lin-14 regulatory circuit triggers an initial dendritic growth activity, whereas the precisely timed lin-28-let-7-lin-41 regulatory circuit signals a subsequent developmental decline in dendritic growth ability, hence restricting dendritic arborization within a set time frame. Loss-of-function mutations in the lin-4 microRNA gene cause limited dendritic outgrowth, whereas loss-of-function mutations in its direct target, the lin-14 transcription factor gene, cause precocious and excessive outgrowth. In contrast, loss-of-function mutations in the let-7 microRNA gene prevent a developmental decline in dendritic growth ability, whereas loss-of-function mutations in its direct target, the lin-41 tripartite motif protein gene, cause further decline. lin-4 and let-7 regulatory circuits are expressed in the right place at the right time to set start and end times for dendritic arborization. Replacing the lin-4 upstream cis-regulatory sequence at the lin-4 locus with a late-onset let-7 upstream cis-regulatory sequence delays dendrite arborization, whereas replacing the let-7 upstream cis-regulatory sequence at the let-7 locus with an early-onset lin-4 upstream cis-regulatory sequence causes a precocious decline in dendritic growth ability. Our results indicate that the lin-4-lin-14 and the lin-28-let-7-lin-41 regulatory circuits control the timing of dendrite arborization through antagonistic regulation of the DMA-1 receptor level on dendrites. The LIN-14 transcription factor likely directly represses dma-1 gene expression through a transcriptional means, whereas the LIN-41 tripartite motif protein likely indirectly promotes dma-1 gene expression through a posttranscriptional means.
关键词lin-4-lin-14 pathway lin-28-let-7-lin-41 pathway heterochronic genes neuronal timers dendrite arborization
URL查看原文
收录类别SCI
语种英语
资助项目NSF[IOS-1455758] ; National Institute of General Medical Sciences of the NIH[R01GM111320]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000907643500043
出版者NATL ACAD SCIENCES
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/241052
专题生命科学与技术学院_PI研究组_邹燕组
生命科学与技术学院_硕士生
通讯作者Chang, Chieh
作者单位
1.Univ Illinois, Dept Biol Sci, Chicago, IL 60607 USA
2.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201210, Peoples R China
3.Univ Alabama Birmingham, Dept Cell Dev & Integrat Biol, Birmingham, AL 35233 USA
4.Stanford Univ, HHMI, Stanford, CA 94305 USA
5.Stanford Univ, Dept Biol, Stanford, CA 94305 USA
推荐引用方式
GB/T 7714
Suzuki, Nobuko,Zou, Yan,Sun, HaoSheng,et al. Two intrinsic timing mechanisms set start and end times for dendritic arborization of a nociceptive neuron[J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,2022,119(45):e2210053119.
APA Suzuki, Nobuko.,Zou, Yan.,Sun, HaoSheng.,Eichel, Kelsie.,Shao, Meiyu.,...&Chang, Chieh.(2022).Two intrinsic timing mechanisms set start and end times for dendritic arborization of a nociceptive neuron.PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA,119(45),e2210053119.
MLA Suzuki, Nobuko,et al."Two intrinsic timing mechanisms set start and end times for dendritic arborization of a nociceptive neuron".PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 119.45(2022):e2210053119.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Suzuki, Nobuko]的文章
[Zou, Yan]的文章
[Sun, HaoSheng]的文章
百度学术
百度学术中相似的文章
[Suzuki, Nobuko]的文章
[Zou, Yan]的文章
[Sun, HaoSheng]的文章
必应学术
必应学术中相似的文章
[Suzuki, Nobuko]的文章
[Zou, Yan]的文章
[Sun, HaoSheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。