消息
×
loading..
Digital-twin-based Online Parameter Personalization for Implantable Cardiac Defibrillators
2022-07-15
会议录名称2022 44TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC)
ISSN2375-7477
发表状态已发表
DOI10.1109/EMBC48229.2022.9871142
摘要Implantable cardioverter defibrillators (ICDs) are developed to provide timely therapies when adverse patient conditions are detected. Device therapies need to be adjusted for individual patients and evolving patient conditions, which can be achieved by adjusting device parameter settings. However, there are no validated clinical guidelines for parameter personalization, especially for patients with complex and rare conditions. In this paper, we propose a reinforcement learning framework for online parameter personalization of ICDs. Heart states can be inferred from ECG signals from ECG patches, which can be used to create a digital twin of the patient. Reinforcement learning then use the digital twin as environment to explore parameter settings with less misdiagnosis. Experiments were performed on three virtual patients with specific and evolving heart conditions, and the result shows that our proposed approach can identify ICD parameter settings that can achieve better performance compared to default parameter settings. Clinical relevance-Patients with ICD and ECG patch can receive periodic ICD parameter adjustments that are appropriate for their current heart conditions
关键词Heart Reinforcement learning Electrocardiography Biology Digital twins Defibrillation Guidelines
会议地点Glasgow, Scotland, United Kingdom
会议日期11-15 July 2022
URL查看原文
收录类别EI
来源库IEEE
引用统计
正在获取...
文献类型会议论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/240493
专题信息科学与技术学院_硕士生
信息科学与技术学院_PI研究组_江智浩组
通讯作者Jiang, Zhihao
作者单位
1.School of Information Science and Technology, ShanghaiTech University, China;
2.University of Manchester, Department of Mathematics, United Kingdom;
3.Shanghai Engineering Research Center of Intelligent Vision and Imaging, China
第一作者单位信息科学与技术学院
通讯作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Lai, Mincai,Yang, Haochen,Gu, Jicheng,et al. Digital-twin-based Online Parameter Personalization for Implantable Cardiac Defibrillators[C],2022.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lai, Mincai]的文章
[Yang, Haochen]的文章
[Gu, Jicheng]的文章
百度学术
百度学术中相似的文章
[Lai, Mincai]的文章
[Yang, Haochen]的文章
[Gu, Jicheng]的文章
必应学术
必应学术中相似的文章
[Lai, Mincai]的文章
[Yang, Haochen]的文章
[Gu, Jicheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。