Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction
2022-10
发表期刊INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (IF:4.9[JCR-2023],5.6[5-Year])
EISSN1422-0067
卷号23期号:19
发表状态已发表
DOI10.3390/ijms231911624
摘要Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines has shown clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mutations result in immunogenicity among cancer cells and efficient tools to predict the immunogenicity of neoepitopes are still urgently needed. Here, we present the Seq2Neo pipeline, which provides a one-stop solution for neoepitope feature prediction using raw sequencing data. Neoantigens derived from different types of genome DNA alterations, including point mutations, insertion deletions and gene fusions, are all supported. Importantly, a convolutional neural network (CNN)-based model was trained to predict the immunogenicity of neoepitopes and this model showed an improved performance compared to the currently available tools in immunogenicity prediction using independent datasets. We anticipate that the Seq2Neo pipeline could become a useful tool in the prediction of neoantigen immunogenicity and cancer immunotherapy. Seq2Neo is open-source software under an academic free license (AFL) v3.0 and is freely available at Github.
关键词immunogenicity immunotherapy bioinformatics pipeline deep learning
URL查看原文
收录类别SCI ; SCIE
语种英语
资助项目Shanghai Science and Technology Commission[21ZR1442400] ; National Natural Science Foundation of China[31771373]
WOS研究方向Biochemistry & Molecular Biology ; Chemistry
WOS类目Biochemistry & Molecular Biology ; Chemistry, Multidisciplinary
WOS记录号WOS:000867763400001
出版者MDPI
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/240481
专题生命科学与技术学院_硕士生
生命科学与技术学院_PI研究组_刘雪松组
生命科学与技术学院_博士生
通讯作者Liu, Xue-Song
作者单位
1.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201203, Peoples R China
2.Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Shanghai 200031, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
4.Univ Montreal, Fac Med, Dept Med, Montreal, PQ H4T 1G2, Canada
第一作者单位生命科学与技术学院
通讯作者单位生命科学与技术学院
第一作者的第一单位生命科学与技术学院
推荐引用方式
GB/T 7714
Diao, Kaixuan,Chen, Jing,Wu, Tao,et al. Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction[J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,2022,23(19).
APA Diao, Kaixuan.,Chen, Jing.,Wu, Tao.,Wang, Xuan.,Wang, Guangshuai.,...&Liu, Xue-Song.(2022).Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction.INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,23(19).
MLA Diao, Kaixuan,et al."Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction".INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23.19(2022).
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Diao, Kaixuan]的文章
[Chen, Jing]的文章
[Wu, Tao]的文章
百度学术
百度学术中相似的文章
[Diao, Kaixuan]的文章
[Chen, Jing]的文章
[Wu, Tao]的文章
必应学术
必应学术中相似的文章
[Diao, Kaixuan]的文章
[Chen, Jing]的文章
[Wu, Tao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 10.3390@ijms231911624.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。