ShanghaiTech University Knowledge Management System
Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction | |
2022-10 | |
发表期刊 | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES (IF:4.9[JCR-2023],5.6[5-Year]) |
EISSN | 1422-0067 |
卷号 | 23期号:19 |
发表状态 | 已发表 |
DOI | 10.3390/ijms231911624 |
摘要 | Neoantigens derived from somatic DNA alterations are ideal cancer-specific targets. In recent years, the combination therapy of PD-1/PD-L1 blockers and neoantigen vaccines has shown clinical efficacy in original PD-1/PD-L1 blocker non-responders. However, not all somatic DNA mutations result in immunogenicity among cancer cells and efficient tools to predict the immunogenicity of neoepitopes are still urgently needed. Here, we present the Seq2Neo pipeline, which provides a one-stop solution for neoepitope feature prediction using raw sequencing data. Neoantigens derived from different types of genome DNA alterations, including point mutations, insertion deletions and gene fusions, are all supported. Importantly, a convolutional neural network (CNN)-based model was trained to predict the immunogenicity of neoepitopes and this model showed an improved performance compared to the currently available tools in immunogenicity prediction using independent datasets. We anticipate that the Seq2Neo pipeline could become a useful tool in the prediction of neoantigen immunogenicity and cancer immunotherapy. Seq2Neo is open-source software under an academic free license (AFL) v3.0 and is freely available at Github. |
关键词 | immunogenicity immunotherapy bioinformatics pipeline deep learning |
URL | 查看原文 |
收录类别 | SCI ; SCIE |
语种 | 英语 |
资助项目 | Shanghai Science and Technology Commission[21ZR1442400] ; National Natural Science Foundation of China[31771373] |
WOS研究方向 | Biochemistry & Molecular Biology ; Chemistry |
WOS类目 | Biochemistry & Molecular Biology ; Chemistry, Multidisciplinary |
WOS记录号 | WOS:000867763400001 |
出版者 | MDPI |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/240481 |
专题 | 生命科学与技术学院_硕士生 生命科学与技术学院_PI研究组_刘雪松组 生命科学与技术学院_博士生 |
通讯作者 | Liu, Xue-Song |
作者单位 | 1.ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 201203, Peoples R China 2.Chinese Acad Sci, Shanghai Inst Biochem & Cell Biol, Shanghai 200031, Peoples R China 3.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 4.Univ Montreal, Fac Med, Dept Med, Montreal, PQ H4T 1G2, Canada |
第一作者单位 | 生命科学与技术学院 |
通讯作者单位 | 生命科学与技术学院 |
第一作者的第一单位 | 生命科学与技术学院 |
推荐引用方式 GB/T 7714 | Diao, Kaixuan,Chen, Jing,Wu, Tao,et al. Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction[J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,2022,23(19). |
APA | Diao, Kaixuan.,Chen, Jing.,Wu, Tao.,Wang, Xuan.,Wang, Guangshuai.,...&Liu, Xue-Song.(2022).Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction.INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES,23(19). |
MLA | Diao, Kaixuan,et al."Seq2Neo: A Comprehensive Pipeline for Cancer Neoantigen Immunogenicity Prediction".INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES 23.19(2022). |
条目包含的文件 | 下载所有文件 | |||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。