消息
×
loading..
Compressive Sensing via Nonlocal Low-Rank Regularization
2014-08
发表期刊IEEE TRANSACTIONS ON IMAGE PROCESSING (IF:10.8[JCR-2023],12.1[5-Year])
ISSN1057-7149
卷号23期号:8页码:3618-3632
发表状态已发表
DOI10.1109/TIP.2014.2329449
摘要Sparsity has been widely exploited for exact reconstruction of a signal from a small number of random measurements. Recent advances have suggested that structured or group sparsity often leads to more powerful signal reconstruction techniques in various compressed sensing (CS) studies. In this paper, we propose a nonlocal low-rank regularization (NLR) approach toward exploiting structured sparsity and explore its application into CS of both photographic and MRI images. We also propose the use of a nonconvex log det(X) as a smooth surrogate function for the rank instead of the convex nuclear norm and justify the benefit of such a strategy using extensive experiments. To further improve the computational efficiency of the proposed algorithm, we have developed a fast implementation using the alternative direction multiplier method technique. Experimental results have shown that the proposed NLR-CS algorithm can significantly outperform existing state-of-the-art CS techniques for image recovery.
关键词Compresses sensing low-rank approximation structured sparsity nonconvex optimization alternative direction multiplier method
URL查看原文
收录类别SCI ; EI
语种英语
资助项目NSF[ECCS-0968730]
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic
WOS记录号WOS:000340094000002
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
EI入藏号20143017971565
EI主题词Compressed sensing ; Magnetic resonance imaging
EI分类号Information Theory and Signal Processing:716.1 ; Imaging Techniques:746
WOS关键词IMAGE-RECONSTRUCTION ; THRESHOLDING ALGORITHM ; SPARSITY ; SIGNAL ; RECOVERY
原始文献类型Article
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2384
专题信息科学与技术学院
信息科学与技术学院_PI研究组_马毅组
通讯作者Dong, Weisheng
作者单位
1.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China
2.W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA
3.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 200444, Peoples R China
4.Philips Healthcare, Suzhou 234000, Peoples R China
推荐引用方式
GB/T 7714
Dong, Weisheng,Shi, Guangming,Li, Xin,et al. Compressive Sensing via Nonlocal Low-Rank Regularization[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2014,23(8):3618-3632.
APA Dong, Weisheng,Shi, Guangming,Li, Xin,Ma, Yi,&Huang, Feng.(2014).Compressive Sensing via Nonlocal Low-Rank Regularization.IEEE TRANSACTIONS ON IMAGE PROCESSING,23(8),3618-3632.
MLA Dong, Weisheng,et al."Compressive Sensing via Nonlocal Low-Rank Regularization".IEEE TRANSACTIONS ON IMAGE PROCESSING 23.8(2014):3618-3632.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Dong, Weisheng]的文章
[Shi, Guangming]的文章
[Li, Xin]的文章
百度学术
百度学术中相似的文章
[Dong, Weisheng]的文章
[Shi, Guangming]的文章
[Li, Xin]的文章
必应学术
必应学术中相似的文章
[Dong, Weisheng]的文章
[Shi, Guangming]的文章
[Li, Xin]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 2384.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。