| |||||||
ShanghaiTech University Knowledge Management System
Compressive Sensing via Nonlocal Low-Rank Regularization | |
2014-08 | |
发表期刊 | IEEE TRANSACTIONS ON IMAGE PROCESSING (IF:10.8[JCR-2023],12.1[5-Year]) |
ISSN | 1057-7149 |
卷号 | 23期号:8页码:3618-3632 |
发表状态 | 已发表 |
DOI | 10.1109/TIP.2014.2329449 |
摘要 | Sparsity has been widely exploited for exact reconstruction of a signal from a small number of random measurements. Recent advances have suggested that structured or group sparsity often leads to more powerful signal reconstruction techniques in various compressed sensing (CS) studies. In this paper, we propose a nonlocal low-rank regularization (NLR) approach toward exploiting structured sparsity and explore its application into CS of both photographic and MRI images. We also propose the use of a nonconvex log det(X) as a smooth surrogate function for the rank instead of the convex nuclear norm and justify the benefit of such a strategy using extensive experiments. To further improve the computational efficiency of the proposed algorithm, we have developed a fast implementation using the alternative direction multiplier method technique. Experimental results have shown that the proposed NLR-CS algorithm can significantly outperform existing state-of-the-art CS techniques for image recovery. |
关键词 | Compresses sensing low-rank approximation structured sparsity nonconvex optimization alternative direction multiplier method |
URL | 查看原文 |
收录类别 | SCI ; EI |
语种 | 英语 |
资助项目 | NSF[ECCS-0968730] |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000340094000002 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
EI入藏号 | 20143017971565 |
EI主题词 | Compressed sensing ; Magnetic resonance imaging |
EI分类号 | Information Theory and Signal Processing:716.1 ; Imaging Techniques:746 |
WOS关键词 | IMAGE-RECONSTRUCTION ; THRESHOLDING ALGORITHM ; SPARSITY ; SIGNAL ; RECOVERY |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/2384 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_马毅组 |
通讯作者 | Dong, Weisheng |
作者单位 | 1.Xidian Univ, Sch Elect Engn, Xian 710071, Peoples R China 2.W Virginia Univ, Lane Dept Comp Sci & Elect Engn, Morgantown, WV 26506 USA 3.Shanghai Tech Univ, Sch Informat Sci & Technol, Shanghai 200444, Peoples R China 4.Philips Healthcare, Suzhou 234000, Peoples R China |
推荐引用方式 GB/T 7714 | Dong, Weisheng,Shi, Guangming,Li, Xin,et al. Compressive Sensing via Nonlocal Low-Rank Regularization[J]. IEEE TRANSACTIONS ON IMAGE PROCESSING,2014,23(8):3618-3632. |
APA | Dong, Weisheng,Shi, Guangming,Li, Xin,Ma, Yi,&Huang, Feng.(2014).Compressive Sensing via Nonlocal Low-Rank Regularization.IEEE TRANSACTIONS ON IMAGE PROCESSING,23(8),3618-3632. |
MLA | Dong, Weisheng,et al."Compressive Sensing via Nonlocal Low-Rank Regularization".IEEE TRANSACTIONS ON IMAGE PROCESSING 23.8(2014):3618-3632. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。