ShanghaiTech University Knowledge Management System
Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact | |
Wang, Xiujun1,2,3; Song, Sannian1,2; Wang, Haomin1,2,3; Guo, Tianqi1; Xue, Yuan1,2; Wang, Ruobing1,2; Wang, HuiShan1,2,3; Chen, Lingxiu1,3; Jiang, Chengxin1,3,4 ![]() ![]() | |
2022-09-05 | |
发表期刊 | ADVANCED SCIENCE
![]() |
ISSN | / |
EISSN | 2198-3844 |
卷号 | 9期号:25 |
发表状态 | 已发表 |
DOI | 10.1002/advs.202202222 |
摘要 | Nonvolatile phase-change random access memory (PCRAM) is regarded as one of the promising candidates for emerging mass storage in the era of Big Data. However, relatively high programming energy hurdles the further reduction of power consumption in PCRAM. Utilizing narrow edge-contact of graphene can effectively reduce the active volume of phase change material in each cell, and therefore realize low-power operation. Here, it demonstrates that the power consumption can be reduced to approximate to 53.7 fJ in a cell with approximate to 3 nm-wide graphene nanoribbon (GNR) as edge-contact, whose cross-sectional area is only approximate to 1 nm(2). It is found that the polarity of the bias pulse determines its cycle endurance in the asymmetric structure. If a positive bias is applied to the graphene electrode, the endurance can be extended at least one order longer than the case with a reversal of polarity. In addition, the introduction of the hexagonal boron nitride (h-BN) multilayer leads to a low resistance drift and a high programming speed in a memory cell. The work represents a great technological advance for the low-power PCRAM and can benefit in-memory computing in the future. |
关键词 | cycle endurance edge-contact graphene nanoribbon phase change cell power consumption |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[ |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science |
WOS类目 | Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary |
WOS记录号 | WOS:000850208100038 |
出版者 | WILEY |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/229830 |
专题 | 物质科学与技术学院_博士生 物质科学与技术学院_特聘教授组_谢晓明组 |
通讯作者 | Wang, Haomin; Song, Zhitang |
作者单位 | 1.Chinese Acad Sciences, Shanghai Inst Microsyst & Informat Technol, State Key Lab Functional Materials Informatics, 865 Changning Rd, Shanghai 200050, P. R. China 2.Univ Chinese Acad Sciences, Ctr Materials Sci & Optoelectronics Engn, Beijing 100049, P. R. China 3.CAS Ctr Excellence Superconducting Elect, CENSE, Shanghai 200050, P. R. China 4.ShanghaiTech Univ, Sch Phys Sci & Technology, Shanghai 201210, P. R. China 5.Natl Inst Materials Sci, Res Ctr Funct Materials, 1-1 Namiki, Tsukuba Shi 3050044, Japan 6.Natl Inst Materials Sci, Int Ctr Materials Nanoarchitecton, 1-1 Namiki, Tsukuba Shi 3050044, Japan |
推荐引用方式 GB/T 7714 | Wang, Xiujun,Song, Sannian,Wang, Haomin,et al. Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact[J]. ADVANCED SCIENCE,2022,9(25). |
APA | Wang, Xiujun.,Song, Sannian.,Wang, Haomin.,Guo, Tianqi.,Xue, Yuan.,...&Xie, Xiaoming.(2022).Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact.ADVANCED SCIENCE,9(25). |
MLA | Wang, Xiujun,et al."Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact".ADVANCED SCIENCE 9.25(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。