Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact
2022-09-05
发表期刊ADVANCED SCIENCE
ISSN/
EISSN2198-3844
卷号9期号:25
发表状态已发表
DOI10.1002/advs.202202222
摘要

Nonvolatile phase-change random access memory (PCRAM) is regarded as one of the promising candidates for emerging mass storage in the era of Big Data. However, relatively high programming energy hurdles the further reduction of power consumption in PCRAM. Utilizing narrow edge-contact of graphene can effectively reduce the active volume of phase change material in each cell, and therefore realize low-power operation. Here, it demonstrates that the power consumption can be reduced to approximate to 53.7 fJ in a cell with approximate to 3 nm-wide graphene nanoribbon (GNR) as edge-contact, whose cross-sectional area is only approximate to 1 nm(2). It is found that the polarity of the bias pulse determines its cycle endurance in the asymmetric structure. If a positive bias is applied to the graphene electrode, the endurance can be extended at least one order longer than the case with a reversal of polarity. In addition, the introduction of the hexagonal boron nitride (h-BN) multilayer leads to a low resistance drift and a high programming speed in a memory cell. The work represents a great technological advance for the low-power PCRAM and can benefit in-memory computing in the future.

关键词cycle endurance edge-contact graphene nanoribbon phase change cell power consumption
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
资助项目National Natural Science Foundation of China[
WOS研究方向Chemistry ; Science & Technology - Other Topics ; Materials Science
WOS类目Chemistry, Multidisciplinary ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary
WOS记录号WOS:000850208100038
出版者WILEY
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/229830
专题物质科学与技术学院_博士生
物质科学与技术学院_特聘教授组_谢晓明组
通讯作者Wang, Haomin; Song, Zhitang
作者单位
1.Chinese Acad Sciences, Shanghai Inst Microsyst & Informat Technol, State Key Lab Functional Materials Informatics, 865 Changning Rd, Shanghai 200050, P. R. China
2.Univ Chinese Acad Sciences, Ctr Materials Sci & Optoelectronics Engn, Beijing 100049, P. R. China
3.CAS Ctr Excellence Superconducting Elect, CENSE, Shanghai 200050, P. R. China
4.ShanghaiTech Univ, Sch Phys Sci & Technology, Shanghai 201210, P. R. China
5.Natl Inst Materials Sci, Res Ctr Funct Materials, 1-1 Namiki, Tsukuba Shi 3050044, Japan
6.Natl Inst Materials Sci, Int Ctr Materials Nanoarchitecton, 1-1 Namiki, Tsukuba Shi 3050044, Japan
推荐引用方式
GB/T 7714
Wang, Xiujun,Song, Sannian,Wang, Haomin,et al. Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact[J]. ADVANCED SCIENCE,2022,9(25).
APA Wang, Xiujun.,Song, Sannian.,Wang, Haomin.,Guo, Tianqi.,Xue, Yuan.,...&Xie, Xiaoming.(2022).Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact.ADVANCED SCIENCE,9(25).
MLA Wang, Xiujun,et al."Minimizing the Programming Power of Phase Change Memory by Using Graphene Nanoribbon Edge-Contact".ADVANCED SCIENCE 9.25(2022).
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Xiujun]的文章
[Song, Sannian]的文章
[Wang, Haomin]的文章
百度学术
百度学术中相似的文章
[Wang, Xiujun]的文章
[Song, Sannian]的文章
[Wang, Haomin]的文章
必应学术
必应学术中相似的文章
[Wang, Xiujun]的文章
[Song, Sannian]的文章
[Wang, Haomin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。