A High-Throughput Full-Dataflow MobileNetv2 Accelerator on Edge FPGA
2022
发表期刊IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS (IF:2.7[JCR-2023],2.9[5-Year])
ISSN0278-0070
EISSN1937-4151
卷号42期号:5页码:1-1
发表状态已发表
DOI10.1109/TCAD.2022.3198246
摘要

FPGA accelerators for lightweight neural networks such as MobileNetv2 are of great need in edge computing applications with high throughput requirements. Dataflow architecture has been considered a promising approach to optimize throughput since the intermediate feature map transfers can be significantly saved. However, previous MobileNetv2 accelerators only achieved a partial-dataflow architecture, and just one-third of the feature map transfers can be saved. To solve this issue, we propose a scheme to achieve a full-dataflow MobileNetv2 accelerator on FPGA. The scheme contains four techniques. First, we improve the full-integer quantization for easier deployment on hardware. Second, we propose tunable activation weight imbalance transfer for less quantization accuracy loss. Third, we present several highly optimized accelerator components whose parallelism can be flexibly adjusted, and implement residual connection with deeper FIFO so that the requirements of the full-dataflow architecture can be fully met. Finally, we present a computing resource allocation strategy to balance the latency of each layer, and a memory resource allocation strategy to effectively use the on-chip memory. Compared to the state-ofthe-art, experimental results show that the accelerator achieves 1910 FPS with 1.8 speedup when implemented on the Xilinx ZCU102 FPGA. In addition, it reaches 72.98% Top-1 accuracy with 8-bit integer quantization that outperforms all the other MobileNetv2 accelerators. IEEE

关键词Acceleration Field programmable gate arrays (FPGA) Memory architecture Network architecture Parallel architectures Resource allocation Data-flow architectures Dataflow Feature map Field programmable gate array Field programmables High-throughput Parallel processing Programmable gate array Quantization (signal) Resource management
URL查看原文
收录类别EI
语种英语
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20223512670805
EI主题词Quantization (signal)
EI分类号713.3 Modulators, Demodulators, Limiters, Discriminators, Mixers ; 721.2 Logic Elements ; 722 Computer Systems and Equipment ; 912.2 Management
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/226410
专题信息科学与技术学院
信息科学与技术学院_PI研究组_哈亚军组
信息科学与技术学院_博士生
作者单位
1.School of Information Science and Technology, ShanghaiTech University, Shanghai, China
2.School of Computer Science, University of Nottingham Ningbo China, Ningbo, China
3.School of Information Science and Technology and the Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Weixiong Jiang,Heng Yu,Yajun Ha. A High-Throughput Full-Dataflow MobileNetv2 Accelerator on Edge FPGA[J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,2022,42(5):1-1.
APA Weixiong Jiang,Heng Yu,&Yajun Ha.(2022).A High-Throughput Full-Dataflow MobileNetv2 Accelerator on Edge FPGA.IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS,42(5),1-1.
MLA Weixiong Jiang,et al."A High-Throughput Full-Dataflow MobileNetv2 Accelerator on Edge FPGA".IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 42.5(2022):1-1.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Weixiong Jiang]的文章
[Heng Yu]的文章
[Yajun Ha]的文章
百度学术
百度学术中相似的文章
[Weixiong Jiang]的文章
[Heng Yu]的文章
[Yajun Ha]的文章
必应学术
必应学术中相似的文章
[Weixiong Jiang]的文章
[Heng Yu]的文章
[Yajun Ha]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。