| |||||||
ShanghaiTech University Knowledge Management System
Quantifying the error propagation in microkinetic modeling of catalytic reactions with model-predicted binding energies | |
2022-09 | |
发表期刊 | MOLECULAR CATALYSIS (IF:3.9[JCR-2023],3.8[5-Year]) |
ISSN | 2468-8231 |
卷号 | 530 |
发表状态 | 已发表 |
DOI | 10.1016/j.mcat.2022.112575 |
摘要 | Energy prediction models, such as scaling relations, Brønsted–Evans–Polanyi relations and machine-learning prediction models, are widely employed to accelerate the calculations of energies of reaction intermediates and the rational design of catalysts. However, error propagation from predicted binding energies of reaction intermediates and transition states to the calculated reaction rates would result in the misidentification of optimal catalysts. In order to assess and quantify the error propagation in determining kinetic information for catalyst design, here we make energy error simulation based on DFT-calculated binding energies of reaction intermediates within the network of methane dry reforming reaction, then employ these simulated energies to microkinetic modeling. The results suggest that the microkinetic results would have different tolerance to the error indicators of predicted binding energy. Further detailed analyses show that binding energies with low variance are more likely to result in less significant error propagations during the calculation of reaction energy and activation energy, leading to more reliable kinetic information. Finally, several directions are discussed regarding the minimization of error propagation in microkinetic modeling based on predicted binding energies, and suggestions are provided for future studies. © 2022 |
关键词 | Activation energy Catalysis Catalysts Design for testability Errors Forecasting Reaction intermediates Reaction rates Uncertainty analysis Catalytic reactions Energy Energy prediction Error propagation Kinetic information Machine-learning Microkinetic modeling Prediction modelling Scaling relations Uncertainty quantifications |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | Shanghai Rising-Star Program[20QA1406800] ; National Natural Science Foundation of China[ |
WOS研究方向 | Chemistry |
WOS类目 | Chemistry, Physical |
WOS记录号 | WOS:000843516700004 |
出版者 | Elsevier B.V. |
EI入藏号 | 20223312563450 |
EI主题词 | Binding energy |
EI分类号 | 801.4 Physical Chemistry ; 802.2 Chemical Reactions ; 803 Chemical Agents and Basic Industrial Chemicals ; 804 Chemical Products Generally ; 922.1 Probability Theory |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/216564 |
专题 | 物质科学与技术学院_本科生 物质科学与技术学院_PI研究组_杨波组 物质科学与技术学院_硕士生 物质科学与技术学院_博士生 |
通讯作者 | Yang, Bo |
作者单位 | ShanghaiTech Univ, Sch Phys Sci & Technol, 393 Middle Huaxia Rd, Shanghai 201210, Peoples R China |
第一作者单位 | 物质科学与技术学院 |
通讯作者单位 | 物质科学与技术学院 |
第一作者的第一单位 | 物质科学与技术学院 |
推荐引用方式 GB/T 7714 | Lu, Yijun,Wang, Baochuan,Chen, Shuyue,et al. Quantifying the error propagation in microkinetic modeling of catalytic reactions with model-predicted binding energies[J]. MOLECULAR CATALYSIS,2022,530. |
APA | Lu, Yijun,Wang, Baochuan,Chen, Shuyue,&Yang, Bo.(2022).Quantifying the error propagation in microkinetic modeling of catalytic reactions with model-predicted binding energies.MOLECULAR CATALYSIS,530. |
MLA | Lu, Yijun,et al."Quantifying the error propagation in microkinetic modeling of catalytic reactions with model-predicted binding energies".MOLECULAR CATALYSIS 530(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。