ShanghaiTech University Knowledge Management System
Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot | |
2022-10-01 | |
发表期刊 | IEEE ROBOTICS AND AUTOMATION LETTERS (IF:4.6[JCR-2023],5.5[5-Year]) |
ISSN | 2377-3766 |
EISSN | 2377-3766 |
卷号 | 7期号:4页码:1-8 |
发表状态 | 已发表 |
DOI | 10.1109/LRA.2022.3192798 |
摘要 | Controlling a legged robot to climb obstacles with different heights is challenging, but important for an autonomous robot to work in an unstructured environment. In this paper, we model this problem as a novel contextual constrained multi-armed bandit framework. We further propose a learning-based Constrained Contextual Bayesian Optimisation (CoCoBo) algorithm that can solve this class of problems efficiently. CoCoBo models both the reward function and constraints as Gaussian processes, incorporate continuous context space and action space into each Gaussian process, and find the next training samples through excursion search. The experimental results show that CoCoBo is more data-efficient and safe, compared to other related state-of-the-art optimisation methods, on both synthetic test functions and real-world experiments. Our real-world resultsour robot could successfully learn to climb an obstacle higher than itselfreveal that our method has an enormous potential to allow self-adaptive robots to work in various terrains 11Experiment videos and code are available at the project website https://chenaah.github.io/coco/.. IEEE |
关键词 | Constrained optimization Gaussian distribution Gaussian noise (electronic) Learning systems Bayes method Bayesian optimization Bio-inspired robots Bioinspired robot learning Climbing robots Evolutionary robotics Legged locomotion Legged robots Optimisations Quadrupedal robot |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
WOS研究方向 | Robotics |
WOS类目 | Robotics |
WOS记录号 | WOS:000835813000010 |
出版者 | Institute of Electrical and Electronics Engineers Inc. |
EI入藏号 | 20223112530440 |
EI主题词 | Robots |
EI分类号 | 731.5 Robotics ; 922.1 Probability Theory ; 922.2 Mathematical Statistics ; 961 Systems Science |
原始文献类型 | Article in Press |
来源库 | IEEE |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211745 |
专题 | 信息科学与技术学院 信息科学与技术学院_PI研究组_ANDRE LUIS MACEDO ROSENDO SILVA组 信息科学与技术学院_硕士生 |
作者单位 | School of Information Science and Technology, ShanghaiTech University, Shanghai, China |
第一作者单位 | 信息科学与技术学院 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Chen Yu,Jinyue Cao,Andre Rosendo. Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2022,7(4):1-8. |
APA | Chen Yu,Jinyue Cao,&Andre Rosendo.(2022).Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot.IEEE ROBOTICS AND AUTOMATION LETTERS,7(4),1-8. |
MLA | Chen Yu,et al."Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot".IEEE ROBOTICS AND AUTOMATION LETTERS 7.4(2022):1-8. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。