Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot
2022-10-01
发表期刊IEEE ROBOTICS AND AUTOMATION LETTERS (IF:4.6[JCR-2023],5.5[5-Year])
ISSN2377-3766
EISSN2377-3766
卷号7期号:4页码:1-8
发表状态已发表
DOI10.1109/LRA.2022.3192798
摘要

Controlling a legged robot to climb obstacles with different heights is challenging, but important for an autonomous robot to work in an unstructured environment. In this paper, we model this problem as a novel contextual constrained multi-armed bandit framework. We further propose a learning-based Constrained Contextual Bayesian Optimisation (CoCoBo) algorithm that can solve this class of problems efficiently. CoCoBo models both the reward function and constraints as Gaussian processes, incorporate continuous context space and action space into each Gaussian process, and find the next training samples through excursion search. The experimental results show that CoCoBo is more data-efficient and safe, compared to other related state-of-the-art optimisation methods, on both synthetic test functions and real-world experiments. Our real-world resultsour robot could successfully learn to climb an obstacle higher than itselfreveal that our method has an enormous potential to allow self-adaptive robots to work in various terrains 11Experiment videos and code are available at the project website https://chenaah.github.io/coco/.. IEEE

关键词Constrained optimization Gaussian distribution Gaussian noise (electronic) Learning systems Bayes method Bayesian optimization Bio-inspired robots Bioinspired robot learning Climbing robots Evolutionary robotics Legged locomotion Legged robots Optimisations Quadrupedal robot
URL查看原文
收录类别SCI ; SCIE ; EI
语种英语
WOS研究方向Robotics
WOS类目Robotics
WOS记录号WOS:000835813000010
出版者Institute of Electrical and Electronics Engineers Inc.
EI入藏号20223112530440
EI主题词Robots
EI分类号731.5 Robotics ; 922.1 Probability Theory ; 922.2 Mathematical Statistics ; 961 Systems Science
原始文献类型Article in Press
来源库IEEE
引用统计
正在获取...
文献类型期刊论文
条目标识符https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211745
专题信息科学与技术学院
信息科学与技术学院_PI研究组_ANDRE LUIS MACEDO ROSENDO SILVA组
信息科学与技术学院_硕士生
作者单位
School of Information Science and Technology, ShanghaiTech University, Shanghai, China
第一作者单位信息科学与技术学院
第一作者的第一单位信息科学与技术学院
推荐引用方式
GB/T 7714
Chen Yu,Jinyue Cao,Andre Rosendo. Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot[J]. IEEE ROBOTICS AND AUTOMATION LETTERS,2022,7(4):1-8.
APA Chen Yu,Jinyue Cao,&Andre Rosendo.(2022).Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot.IEEE ROBOTICS AND AUTOMATION LETTERS,7(4),1-8.
MLA Chen Yu,et al."Learning to Climb: Constrained Contextual Bayesian Optimisation on a Multi-Modal Legged Robot".IEEE ROBOTICS AND AUTOMATION LETTERS 7.4(2022):1-8.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen Yu]的文章
[Jinyue Cao]的文章
[Andre Rosendo]的文章
百度学术
百度学术中相似的文章
[Chen Yu]的文章
[Jinyue Cao]的文章
[Andre Rosendo]的文章
必应学术
必应学术中相似的文章
[Chen Yu]的文章
[Jinyue Cao]的文章
[Andre Rosendo]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。