| |||||||
ShanghaiTech University Knowledge Management System
NIMBLE : A Non-rigid Hand Model with Bones and Muscles | |
2022-07-22 | |
发表期刊 | ACM TRANSACTIONS ON GRAPHICS (IF:7.8[JCR-2023],9.5[5-Year]) |
ISSN | 0730-0301 |
EISSN | 1557-7368 |
卷号 | 41期号:4 |
发表状态 | 已发表 |
DOI | 10.1145/3528223.3530079 |
摘要 | Emerging Metaverse applications demand reliable, accurate, and photorealistic reproductions of human hands to perform sophisticated operations as if in the physical world. While real human hand represents one of the most intricate coordination between bones, muscle, tendon, and skin, state-of-the-art techniques unanimously focus on modeling only the skeleton of the hand. In this paper, we present NIMBLE, a novel parametric hand model that includes the missing key components, bringing 3D hand model to a new level of realism. We first annotate muscles, bones and skins on the recent Magnetic Resonance Imaging hand (MRI-Hand) dataset [Li et al. 2021] and then register a volumetric template hand onto individual poses and subjects within the dataset. NIMBLE consists of 20 bones as triangular meshes, 7 muscle groups as tetrahedral meshes, and a skin mesh. Via iterative shape registration and parameter learning, it further produces shape blend shapes, pose blend shapes, and a joint regressor. We demonstrate applying NIMBLE to modeling, rendering, and visual inference tasks. By enforcing the inner bones and muscles to match anatomic and kinematic rules, NIMBLE can animate 3D hands to new poses at unprecedented realism. To model the appearance of skin, we further construct a photometric HandStage to acquire high-quality textures and normal maps to model wrinkles and palm print. Finally, NIMBLE also benefits learning-based hand pose and shape estimation by either synthesizing rich data or acting directly as a differentiable layer in the inference network. © 2022 Owner/Author. |
关键词 | 3D modeling Blend skinning Iterative methods Hand model Learning systems Human hands Magnetic resonance imaging Mesh registration Mesh generation Metaverses Muscle Non-rigid Parametric learning Photo-realistic Physical world State-of-the-art techniques |
URL | 查看原文 |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | NSFC programs[ |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Software Engineering |
WOS记录号 | WOS:000830989200026 |
出版者 | Association for Computing Machinery |
EI入藏号 | 20223112473002 |
EI主题词 | Textures |
EI分类号 | 461.2 Biological Materials and Tissue Engineering;701.2 Magnetism: Basic Concepts and Phenomena;723.2 Data Processing and Image Processing;723.5 Computer Applications;746 Imaging Techniques;921.4 Combinatorial Mathematics, Includes Graph Theory, Set Theory;921.6 Numerical Methods |
原始文献类型 | Journal article (JA) |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/211739 |
专题 | 信息科学与技术学院_博士生 信息科学与技术学院_PI研究组_虞晶怡组 信息科学与技术学院_硕士生 信息科学与技术学院_本科生 信息科学与技术学院_PI研究组_张玉瑶组 信息科学与技术学院_PI研究组_许岚组 信息科学与技术学院_PI研究组_马月昕 |
通讯作者 | Yu, Jingyi |
作者单位 | 1.ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China 2.ShanghaiTech Univ, Shanghai, Peoples R China 3.Deemos Technol, Shanghai, Peoples R China 4.Clemson Univ, Clemson, SC 29631 USA |
第一作者单位 | 信息科学与技术学院 |
通讯作者单位 | 上海科技大学 |
第一作者的第一单位 | 信息科学与技术学院 |
推荐引用方式 GB/T 7714 | Li, Yuwei,Zhang, Longwen,Qiu, Zesong,et al. NIMBLE : A Non-rigid Hand Model with Bones and Muscles[J]. ACM TRANSACTIONS ON GRAPHICS,2022,41(4). |
APA | Li, Yuwei.,Zhang, Longwen.,Qiu, Zesong.,Jiang, Yingwenqi.,Li, Nianyi.,...&Yu, Jingyi.(2022).NIMBLE : A Non-rigid Hand Model with Bones and Muscles.ACM TRANSACTIONS ON GRAPHICS,41(4). |
MLA | Li, Yuwei,et al."NIMBLE : A Non-rigid Hand Model with Bones and Muscles".ACM TRANSACTIONS ON GRAPHICS 41.4(2022). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。