ShanghaiTech University Knowledge Management System
Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures | |
2018-05-09 | |
发表期刊 | ADVANCED FUNCTIONAL MATERIALS (IF:18.5[JCR-2023],19.6[5-Year]) |
ISSN | 1616-301X |
卷号 | 28期号:19 |
发表状态 | 已发表 |
DOI | 10.1002/adfm.201800228 |
摘要 | Well-designed micropatterns present in native tissues and organs involve changes in extracellular matrix compositions, cell types and mechanical properties to reflect complex biological functions. However, the design and fabrication of these micropatterns in vitro to meet task-specific biomedical applications remains a challenge. A de novo design strategy to code and synthesize functional micropatterns is presented to engineer cell alignment through the integration of aqueous-peptide inkjet printing and site-specific biomineralization. The inkjet printing provides direct writing of macroscopic biosilica selective peptide-R5 patterns with micrometer-scale resolution on the surface of a biopolymer (silk) hydrogel. This is combined with in situ biomineralization of the R5 peptide for site-specific growth of silica nanoparticles on the micropatterns, avoiding the use of harsh chemicals or complex processing. The functional micropatterned systems are used to align human mesenchymal stem cells and bovine serum albumin. This combination of peptide printing and site-specific biomineralization provides a new route for developing cost-effective micropatterns, with implications for broader materials designs. |
关键词 | biosilica cell alignment inkjet printing micropatterns site-specific biomineralization |
收录类别 | SCI ; SCIE ; EI |
语种 | 英语 |
资助项目 | ONR[N000141310596] |
WOS研究方向 | Chemistry ; Science & Technology - Other Topics ; Materials Science ; Physics |
WOS类目 | Chemistry, Multidisciplinary ; Chemistry, Physical ; Nanoscience & Nanotechnology ; Materials Science, Multidisciplinary ; Physics, Applied ; Physics, Condensed Matter |
WOS记录号 | WOS:000431615300021 |
出版者 | WILEY-V C H VERLAG GMBH |
WOS关键词 | MESENCHYMAL STEM-CELLS ; NANOSTRUCTURED SILICA ; MECHANICAL-PROPERTIES ; SILK BIOMATERIALS ; IN-VITRO ; TISSUE ; MORPHOGENESIS ; DIATOMS ; TOOL ; MICROENVIRONMENTS |
原始文献类型 | Article |
引用统计 | 正在获取...
|
文献类型 | 期刊论文 |
条目标识符 | https://kms.shanghaitech.edu.cn/handle/2MSLDSTB/20880 |
专题 | 物质科学与技术学院_PI研究组_凌盛杰组 |
通讯作者 | Omenetto, Fiorenzo G.; Kaplan, David L. |
作者单位 | 1.Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA 2.Tufts Univ, Dept Chem & Biol Engn, Medford, MA 02155 USA 3.Shanghai Tech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China 4.MIT, Dept Civil & Environm Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA |
推荐引用方式 GB/T 7714 | Guo, Jin,Ling, Shengjie,Li, Wenyi,et al. Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures[J]. ADVANCED FUNCTIONAL MATERIALS,2018,28(19). |
APA | Guo, Jin.,Ling, Shengjie.,Li, Wenyi.,Chen, Ying.,Li, Chunmei.,...&Kaplan, David L..(2018).Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures.ADVANCED FUNCTIONAL MATERIALS,28(19). |
MLA | Guo, Jin,et al."Coding Cell Micropatterns Through Peptide Inkjet Printing for Arbitrary Biomineralized Architectures".ADVANCED FUNCTIONAL MATERIALS 28.19(2018). |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 |
修改评论
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。